40 research outputs found

    Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice

    Get PDF
    We thank Sarah Haigh, Ada Kane, Nicole Reuter, David Carey, and Marilyn Perry Carey for dedicated and expert technical assistance and Cloret Carl for assistance with preparation of the manuscript.This work was supported by grants from the National Institutes of Health, R01 DK-52962, (SPP, Boston University), R41 HL-105816 (SPP, Phoenicia BioSciences), and R42 HL-110727 (Phoenicia BioSciences), 2 P40 ODO010988-16 (GLW, University of Oklahoma) and UL1-TR000157 (RFW, University of Oklahoma). SMN was supported by P50 HL-118006. The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.Yeshttp://www.plosone.org/static/editorial#pee

    Spontaneous delta- to beta-globin switching in K562 human leukemia cells

    No full text

    Spontaneous delta- to beta-globin switching in K562 human leukemia cells

    No full text

    A novel basis for delta beta-thalassemia in a Chinese family

    No full text

    Butyrate Histone Deacetylase Inhibitors

    No full text
    In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition
    corecore