320 research outputs found

    Alpha oscillatory correlates of motor inhibition in the aged brain

    Get PDF
    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains

    Autism spectrum disorder classification based on interpersonal neural synchrony: Can classification be improved by dyadic neural biomarkers using unsupervised graph representation learning?

    Full text link
    Research in machine learning for autism spectrum disorder (ASD) classification bears the promise to improve clinical diagnoses. However, recent studies in clinical imaging have shown the limited generalization of biomarkers across and beyond benchmark datasets. Despite increasing model complexity and sample size in neuroimaging, the classification performance of ASD remains far away from clinical application. This raises the question of how we can overcome these barriers to develop early biomarkers for ASD. One approach might be to rethink how we operationalize the theoretical basis of this disease in machine learning models. Here we introduced unsupervised graph representations that explicitly map the neural mechanisms of a core aspect of ASD, deficits in dyadic social interaction, as assessed by dual brain recordings, termed hyperscanning, and evaluated their predictive performance. The proposed method differs from existing approaches in that it is more suitable to capture social interaction deficits on a neural level and is applicable to young children and infants. First results from functional near-infrared spectroscopy data indicate potential predictive capacities of a task-agnostic, interpretable graph representation. This first effort to leverage interaction-related deficits on neural level to classify ASD may stimulate new approaches and methods to enhance existing models to achieve developmental ASD biomarkers in the future.Comment: Accepted in Medical Image Computing and Computer Assisted Intervention - MICCAI 2022: The 5th International Workshop on Machine Learning in Clinical Neuroimagin

    Predictive Value of Upper Extremity Outcome Measures After Stroke—A Systematic Review and Metaregression Analysis

    Get PDF
    A better understanding of motor recovery after stroke requires large-scale, longitudinal trials applying suitable assessments. Currently, there is an abundance of upper limb assessments used to quantify recovery. How well various assessments can describe upper limb function change over 1 year remains uncertain. A uniform and feasible standard would be beneficial to increase future studies' comparability on stroke recovery. This review describes which assessments are common in large-scale, longitudinal stroke trials and how these quantify the change in upper limb function from stroke onset up to 1 year. A systematic search for well-powered stroke studies identified upper limb assessments classifying motor recovery during the initial year after a stroke. A metaregression investigated the association between assessments and motor recovery within 1 year after stroke. Scores from nine common assessments and 4,433 patients were combined and transformed into a standardized recovery score. A mixed-effects model on recovery scores over time confirmed significant differences between assessments (P < 0.001), with improvement following the weeks after stroke present when measuring recovery using the Action Research Arm Test (β = 0.013), Box and Block test (β = 0.011), Fugl–Meyer Assessment (β = 0.007), or grip force test (β = 0.023). A last-observation-carried-forward analysis also highlighted the peg test (β = 0.017) and Rivermead Assessment (β = 0.011) as additional, valuable long-term outcome measures. Recovery patterns and, thus, trial outcomes are dependent on the assessment implemented. Future research should include multiple common assessments and continue data collection for a full year after stroke to facilitate the consensus process on assessments measuring upper limb recovery

    Effects of brain polarization on reaction times and pinch force in chronic stroke

    Get PDF
    BACKGROUND: Previous studies showed that anodal transcranial DC stimulation (tDCS) applied to the primary motor cortex of the affected hemisphere (M1(affected hemisphere)) after subcortical stroke transiently improves performance of complex tasks that mimic activities of daily living (ADL). It is not known if relatively simpler motor tasks are similarly affected. Here we tested the effects of tDCS on pinch force (PF) and simple reaction time (RT) tasks in patients with chronic stroke in a double-blind cross-over Sham-controlled experimental design. RESULTS: Anodal tDCS shortened reaction times and improved pinch force in the paretic hand relative to Sham stimulation, an effect present in patients with higher impairment. CONCLUSION: tDCS of M1(affected hemisphere )can modulate performance of motor tasks simpler than those previously studied, a finding that could potentially benefit patients with relatively higher impairment levels

    Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Get PDF
    AbstractBackgroundCognitive difficulties are the most common neurological complications in neurofibromatosis type 1 (NF1) patients. Recent animal models proposed increased GABA-mediated inhibition as one underlying mechanism directly affecting the induction of long-term potentiation (LTP) and learning. In most adult NF1 patients, apparent cognitive and attentional deficits, tumors affecting the nervous system and other confounding factors for neuroscientific studies are difficult to control for. Here we used a highly specific group of adult NF1 patients without cognitive or nervous system impairments. Such selected NF1 patients allowed us to address the following open questions: Is the learning process of acquiring a challenging motor skill impaired in NF1 patients? And is such an impairment in relation to differences in intracortical inhibition?MethodsWe used an established non-invasive, double-pulse transcranial magnetic stimulation (dp-TMS) paradigm to assess practice-related modulation of intracortical inhibition, possibly mediated by gamma-minobutyric acid (GABA)ergic-neurotransmission. This was done during an extended learning paradigm in a group of NF1 patients without any neuropsychological deficits, functioning normally in daily life and compared them to healthy age-matched controls.FindingsNF1 patients experienced substantial decline in motor skill acquisition (F=9.2, p=0.008) over five-consecutives training days mediated through a selective reduction in the early acquisition (online) and the consolidation (offline) phase. Furthermore, there was a consistent decrease in task-related intracortical inhibition as a function of the magnitude of learning (T=2.8, p=0.014), especially evident after the early acquisition phase.InterpretationsCollectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work

    Coordination of uncoupled bimanual movements by strictly timed interhemispheric connectivity

    Get PDF
    Independent use of both hands is characteristic of human action in daily life. By nature, however, in-phase bimanual movements, for example clapping, are easier to accomplish than anti-phase movements, for example playing the piano. It is commonly agreed that interhemispheric interactions play a central role in the coordination of bimanual movements. However, the spatial, temporal, and physiological properties of the interhemispheric signals that coordinate different modes of bimanual movements are still not completely understood. More precisely, do individual interhemispheric connectivity parameters have behavioral relevance for bimanual rapid anti-phase coordination? To address this question, we measured movement-related interhemispheric interactions, i.e., inhibition and facilitation, and correlated them with the performance during bimanual coordination. We found that movement-related facilitation from right premotor to left primary motor cortex (rPMd-lM1) predicted performance in anti-phase bimanual movements. It is of note that only fast facilitation during the preparatory period of a movement was associated with success in anti-phase movements. Modulation of right to left primary motor interaction (rM1-lM1) was not related to anti-phase but predicted bimanual in-phase and unimanual behavior. These data suggest that strictly timed modulation of interhemispheric rPMd-lM1 connectivity is essential for independent high-frequency use of both hands. The rM1-lM1 results indicate that adjustment of connectivity between homologous M1 may be important for the regulation of homologous muscle synergies

    Stroke with unknown time of symptom onset: baseline clinical and magnetic resonance imaging data of the first thousand patients in WAKE-UP (efficacy and safety of mri-based thrombolysis in wake-up stroke: a randomized, doubleblind, placebo-controlled trial)

    Get PDF
    Background and Purpose—We describe clinical and magnetic resonance imaging (MRI) characteristics of stroke patients with unknown time of symptom onset potentially eligible for thrombolysis from a large prospective cohort. Methods—We analyzed baseline data from WAKE-UP (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke: A Randomized, Doubleblind, Placebo-Controlled Trial), an investigator-initiated, randomized, placebo-controlled trial of MRI-based thrombolysis in stroke patients with unknown time of symptom onset. MRI judgment included assessment of the mismatch between visibility of the acute ischemic lesion on diffusion-weighted imaging and fluid-attenuated inversion recovery. Results—Of 1005 patients included, diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch was present in 479 patients (48.0%). Patients with daytime-unwitnessed stroke (n=138, 13.7%) had a shorter delay between symptom recognition and hospital arrival (1.5 versus 1.8 hours; P=0.002), a higher National Institutes of Stroke Scale score on admission (8 versus 6; P<0.001), and more often aphasia (72.5% versus 34.0%; P<0.001) when compared with stroke patients waking up from nighttime sleep. Frequency of diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch was comparable between both groups (43.7% versus 48.7%; P=0.30). Conclusions—Almost half of the patients with unknown time of symptom onset stroke otherwise eligible for thrombolysis had MRI findings making them likely to be within a time window for safe and effective thrombolysis. Patients with daytime onset unwitnessed stroke differ from wake-up stroke patients with regards to clinical characteristics but are comparable in terms of MRI characteristics of lesion age. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01525290. URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2011-005906-32

    Clinical characteristics of unknown symptom onset stroke patients with and without diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch

    Get PDF
    Background: Diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch was suggested to identify stroke patients with unknown time of symptom onset likely to be within the time window for thrombolysis. Aims: We aimed to study clinical characteristics associated with DWI-FLAIR mismatch in patients with unknown onset stroke. Methods: We analyzed baseline MRI and clinical data from patients with acute ischemic stroke proven by DWI from WAKE-UP, an investigator-initiated, randomized, placebo-controlled trial of MRI-based thrombolysis in stroke patients with unknown time of symptom onset. Clinical characteristics were compared between patients with and without DWI-FLAIR mismatch. Results: Of 699 patients included, 418 (59.8%) presented with DWI-FLAIR mismatch. A shorter delay between last seen well and symptom recognition (p = 0.0063), a shorter delay between symptom recognition and arrival at hospital (p = 0.0025), and history of atrial fibrillation (p = 0.19) were predictors of DWI-FLAIR mismatch in multivariate analysis. All other characteristics were comparable between groups. Conclusions: There are only minor differences in measured clinical characteristics between unknown symptom onset stroke patients with and without DWI-FLAIR mismatch. DWI-FLAIR mismatch as an indicator of stroke onset within 4.5 h shows no relevant association with commonly collected clinical characteristics of stroke patients

    Effect of informed consent on patient characteristics in a stroke thrombolysis trial

    Get PDF
    Objective: To determine whether the manner of consent, i.e., informed consent by patients themselves or informed consent by proxy, affects clinical characteristics of samples of acute stroke patients enrolled in clinical trials. Methods: We analyzed the manner of obtaining informed consent in the first 1,005 patients from WAKE-UP, an investigator-initiated, randomized, placebo-controlled trial of MRI-based thrombolysis in stroke patients with unknown time of symptom onset running in 6 European countries. Patients providing informed consent by themselves were compared with patients enrolled by proxy consent. Baseline clinical measures were compared between groups. Results: In 359 (35.7%) patients, informed consent was by proxy. Patients with proxy consent were older (median 71 vs 66 years, p < 0.0001) and had a higher frequency of arterial hypertension (58.2% vs 43.4%, p < 0.0001). They showed higher scores on the NIH Stroke Scale (median 11 vs 5, p < 0.0001) and more frequently aphasia (73.7% vs 20.0%, p < 0.0001). The rate of proxy consent varied among countries (p < 0.0001), ranging from 77.1% in Spain to 1.2% in Denmark. Conclusions: Patients recruited by proxy consent were older, had more severe strokes, and had higher prevalence of aphasia than those with capacity to give personal consent. Variations in the manner of consent across countries may influence trial results. Clinicaltrials.gov and Clinicaltrialsregister.eu identifiers: NCT01525290 (clinicaltrials.gov); 2011-005906-32 (clinicaltrialsregister.eu)

    IL-23 (Interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (Interleukin-17) response in stroke

    Get PDF
    Background and Purpose—Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. Methods—In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. Results—We show that the ischemic brain was rapidly infiltrated by IRF4+/CD172a+ conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c+ cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/ IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Conclusions—Our results suggest a central role for interferon regulatory factor 4-positive IL-23–producing conventional DCs in the IL-17–dependent secondary tissue damage in stroke
    • …
    corecore