37,818 research outputs found

    Broadband rotor noise analyses

    Get PDF
    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise

    A dc model for power switching transistors suitable for computer-aided design and analysis

    Get PDF
    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented

    Microflow valve control system design

    Get PDF
    A design synthesis for a microflow control system is presented based on the interrogation of an analytical model, testing, and observation. The key issues relating to controlling a microflow using a variable geometry flow channel are explored through the implementation and testing of open and closed-loop control systems. The reliance of closed-loop systems on accurate flow measurement and the need for an open-loop strategy are covered. A valve and control system capable of accurately controlling flowrates between 0.09 and 400 ml/h and with a range of 900:1 is demonstrated

    The Circumstellar Extinction of Planetary Nebulae

    Get PDF
    We analyze the dependence of circumstellar extinction on core mass for the brightest planetary nebulae (PNe) in the Magellanic Clouds and M31. We show that in all three galaxies, a statistically significant correlation exists between the two quantities, such that high core mass objects have greater extinction. We model this behavior, and show that the relation is a simple consequence of the greater mass loss and faster evolution times of high mass stars. The relation is important because it provides a natural explanation for the invariance of the [O III] 5007 planetary nebula luminosity function (PNLF) with population age: bright Population I PNe are extinguished below the cutoff of the PNLF. It also explains the counter-intuitive observation that intrinsically luminous Population I PNe often appear fainter than PNe from older, low-mass progenitors.Comment: 12 pages, 2 figures, accepted for ApJ, April 10, 199

    TDRSS momentum unload planning

    Get PDF
    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Λ_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Λ_(esc). The decrease in Λ_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Λ_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Λ_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Λ_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Λ_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    X-ray Signatures of an Ionized Reprocessor in the Seyfert galaxy Ton S 180

    Full text link
    We discuss the hard X-ray properties of the Seyfert galaxy Ton S 180, based upon the analysis of ASCA data. We find the X-ray flux varied by a factor ~2 on a time scale of a few thousand seconds. The source showed significantly higher amplitude of variability in the 0.5-2 keV band than in the 2-10 keV band. The continuum is adequately parameterized as a Gamma ~ 2.5 power-law across the 0.6--10 keV band . We confirm the recent discovery of an emission line of high equivalent width, due to Fe K-shell emission from highly-ionized material. These ASCA data show the Fe line profile to be broad and asymmetric and tentatively suggest it is stronger during the X-ray flares, consistent with an origin from the inner parts of an accretion disk. The X-ray spectrum is complex below 2 keV, possibly due to emission from a blend of soft X-ray lines, which would support the existence of an ionized reprocessor, most likely due to a relatively high accretion rate in this source.Comment: 24 pages, 8 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journa

    GCR Neon Isotopic Abundances: Comparison with Wolf-Rayet Star Models and Meteoritic Abundances

    Get PDF
    Measurements of the neon isotopic abundances from the ACE-CRIS experiment are presented. These abundances have been obtained in seven energy intervals over the energy range of ~80≤E≤280 MeV/nucleon. The ^(22)Ne/^(20)Ne source ratio is derived using the measured ^(21)Ne/^(20)Ne abundance as a "tracer" of secondary production of the neon isotopes. We find that the ^(22)Ne/^(20)Ne abundance ratio at the cosmic-ray source is a factor of 5.0±0.2 greater than in the solar wind. The GCR ^(22)Ne/^(20)Ne ratio is also shown to be considerably larger than that found in anomalous cosmic rays, solar energetic particles, most meteoritic samples of matter, and interplanetary dust particles. Recent two-component Wolf-Rayet models provide predictions for the ^(22)Ne/^(20)Ne ratio and other isotope ratios. Comparison of the CRIS neon, iron, and nickel isotopic source abundance ratios with predictions indicate possible enhanced abundances of some neutron-rich nuclides that are expected to accompany the ^(22)Ne excess
    • …
    corecore