21 research outputs found

    LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol:Deep Phenotyping of an International Genetic Cohort

    Get PDF
    Background: Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2-linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions.Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data.Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2-linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants.Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn &Yahr, and Schwab & England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021).Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2-linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivityClinical Trial Registration:ClinicalTrials.gov, NCT04214509

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Post stroke late onset Non-convulsive status epilepticus: analysis of 9 cases

    No full text
    INTRODUCTION: Non-convulsive status epilepticus is a condition that needs timely diagnosis and treatment with insignificant clinical features and high risk of misdiagnosis. We aimed to reveal late onset NCSE in patients with stroke where stroke plays a role in the etiology. METHODS: We conducted a retrospective analysis of patients who presented to our outpatient stroke clinic between January 2013 to January 2016. A week after the stroke, patients were defined as late onset NCSE. A total of 9 patients were included. Demographic properties, stroke etiology, imaging modality, EEG findings, stroke severity according to NIHSS score, functional disability, modified Rankin Scale were recorded for all patients. RESULTS: A total of 9 patients were included. The mean age of the study population was 70,5± 9,6 years. There were 8 (88,9%) females, and 1 male. Eight of nine patients had middle cerebral artery, 1 patient had posterior cerebral artery infarct. While 5 patients had cardioembolic stroke, 4 patients had cryptogenic stroke. DISCUSSION AND CONCLUSION: The late onset NCSE after ischemic stroke is not a rare entity. NCSE should be kept in the differential diagnosis of apathy patients with older age and large stroke

    Low Levels ofLRRK2Gene Expression are Associated withLRRK2SNPs and Contribute to Parkinson's Disease Progression

    No full text
    Parkinson's disease (PD) is a chronic neurodegenerative disease that has relatively slow progression with motor symptoms.Leucine-rich repeat kinase 2 (LRRK2)gene mutations and polymorphisms are suggested to be associated with PD. In this study, we aimed to investigate the association between single-nucleotide polymorphisms (SNPs) of theLRRK2gene, namely, rs11176013, rs10878371, rs11835105, and PD. Genotypes of 132 PD cases and 133 healthy individuals were determined by qRT-PCR. Haplotype analysis was performed. Additionally,LRRK2mRNA expression levels were determined in 83 PD cases and 55 healthy subjects. The relationship betweenLRRK2mRNA levels, the target SNPs, and clinical data was also investigated. Our results indicated that the "GG" genotype and "G" allele of rs11176013 and the "CC" genotype and "C" allele of rs10878371 were more frequent in cases. The "GCG" haplotype was significantly more frequent in cases.LRRK2mRNA expression levels in patients were significantly lower than those in healthy individuals. The patients with the "CC" genotype for rs10878371 and the "GG" genotype for rs11176013 had decreasedLRRK2mRNA levels. We found that the rs11176013 "GG" genotype and the rs10878371 "CC" genotype were less frequently seen in cases with akinetic rigid or combined akinetic rigid and tremor-dominant initial symptoms. Consequently, our results demonstrate that the rs11176013 and rs10878371 polymorphisms are associated with PD in a Turkish cohort, and moreover, these results suggest that these polymorphisms may affect the expression of theLRRK2gene and disease progression and thus play a role in the pathogenesis of PD

    Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson's Disease

    No full text
    Mitochondrial dysfunctions are significant contributors to neurodegeneration. One result or a cause of mitochondrial dysfunction might be the disruption of mtDNA transcription. Limited data indicated an altered expression of mtDNA encoded transcripts in Alzheimer's disease (AD) or Parkinson's disease (PD). The number of mitochondria is high in cells with a high energy demand, such as muscle or nerve cells. AD or PD involves increased risk of cardiomyopathy, suggesting that mitochondrial dysfunction might be systemic. If it is systemic, we should observe it in different cell types. Given that, we wanted to investigate any disruption in the regulation of mtDNA encoded gene expression in addition to PINK1, PARKIN, and ATP levels in peripheral blood samples of PD cases who are affected by a neurodegenerative disorder that is very well known by its mitochondrial aspects. Our results showed for the first time that: 1) age of onset > 50 PD sporadic (PDS) cases: mtDNA transcription and quality control genes were affected; 2) age of onset <50 PDS cases: only mtDNA transcription was affected; and 3) PD cases with familial background: only quality control genes were affected. mtDNA copy number was not a confounder. Intracellular ATP levels of PD case subgroups were significantly higher than those of healthy subjects. We suggest that a systemic dysregulation of transcription of mtDNA or mitochondrial quality control genes might result in the development of a sporadic form of the disease. Additionally, ATP elevation might be an independent compensatory and response mechanism. Hyperactive cells in AD and PD require further investigation
    corecore