3,325 research outputs found

    Light-Ray Radon Transform for Abelianin and Nonabelian Connection in 3 and 4 Dimensional Space with Minkowsky Metric

    Get PDF
    We consider a real manifold of dimension 3 or 4 with Minkovsky metric, and with a connection for a trivial GL(n,C) bundle over that manifold. To each light ray on the manifold we assign the data of paralel transport along that light ray. It turns out that these data are not enough to reconstruct the connection, but we can add more data, which depend now not from lines but from 2-planes, and which in some sence are the data of parallel transport in the complex light-like directions, then we can reconstruct the connection up to a gauge transformation. There are some interesting applications of the construction: 1) in 4 dimensions, the self-dual Yang Mills equations can be written as the zero curvature condition for a pair of certain first order differential operators; one of the operators in the pair is the covariant derivative in complex light-like direction we studied. 2) there is a relation of this Radon transform with the supersymmetry. 3)using our Radon transform, we can get a measure on the space of 2 dimensional planes in 4 dimensional real space. Any such measure give rise to a Crofton 2-density. The integrals of this 2-density over surfaces in R^4 give rise to the Lagrangian for maps of real surfaces into R^4, and therefore to some string theory. 4) there are relations with the representation theory. In particular, a closely related transform in 3 dimensions can be used to get the Plancerel formula for representations of SL(2,R).Comment: We add an important discussion part, establishing the relation of our Radon transform with the self-dual Yang-Mills, string theory, and the represntation theory of the group SL(2,R

    SU(3) Anderson impurity model: A numerical renormalization group approach exploiting non-Abelian symmetries

    Get PDF
    We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.Comment: 18 pages, 9 figure

    Quasideterminants

    Get PDF
    The determinant is a main organizing tool in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division algebra. We believe that the notion of quasideterminants should be one of main organizing tools in noncommutative algebra giving them the same role determinants play in commutative algebra.Comment: amstex; final version; to appear in Advances in Mat

    The Associated Metric for a Particle in a Quantum Energy Level

    Get PDF
    We show that the probabilistic distribution over the space in the spectator world, can be associated via noncommutative geometry (with some modifications) to a metric in which the particle lives. According to this geometrical view, the metric in the particle world is ``contracted'' or ``stretched'' in an inverse proportion to the probability distribution.Comment: 14 pages, latex, epsf, 3 figures. Some clarifications were adde

    Isotropic subbundles of TM⊕T∗MTM\oplus T^*M

    Full text link
    We define integrable, big-isotropic structures on a manifold MM as subbundles E⊆TM⊕T∗ME\subseteq TM\oplus T^*M that are isotropic with respect to the natural, neutral metric (pairing) gg of TM⊕T∗MTM\oplus T^*M and are closed by Courant brackets (this also implies that [E,E⊥g]⊆E⊥g[E,E^{\perp_g}]\subseteq E^{\perp_g}). We give the interpretation of such a structure by objects of MM, we discuss the local geometry of the structure and we give a reduction theorem.Comment: LaTex, 37 pages, minimization of the defining condition

    Noncommutative symmetric functions and Laplace operators for classical Lie algebras

    Get PDF
    New systems of Laplace (Casimir) operators for the orthogonal and symplectic Lie algebras are constructed. The operators are expressed in terms of paths in graphs related to matrices formed by the generators of these Lie algebras with the use of some properties of the noncommutative symmetric functions associated with a matrix. The decomposition of the Sklyanin determinant into a product of quasi-determinants play the main role in the construction. Analogous decomposition for the quantum determinant provides an alternative proof of the known construction for the Lie algebra gl(N).Comment: 25 page

    Coupling Poisson and Jacobi structures on foliated manifolds

    Full text link
    Let M be a differentiable manifold endowed with a foliation F. A Poisson structure P on M is F-coupling if the image of the annihilator of TF by the sharp-morphism defined by P is a normal bundle of the foliation F. This notion extends Sternberg's coupling symplectic form of a particle in a Yang-Mills field. In the present paper we extend Vorobiev's theory of coupling Poisson structures from fiber bundles to foliations and give simpler proofs of Vorobiev's existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. Then we discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.Comment: LateX, 38 page
    • …
    corecore