10 research outputs found

    Comprehensive analysis of R-spondin fusions and RNF43 mutations implicate novel therapeutic options in colorectal cancer.

    No full text
    PURPOSE Gene fusions involving R-spondin (RSPOfp) and RNF43 mutations have been shown to drive Wnt-dependent tumor initiation in colorectal cancer (CRC). Herein, we aimed to characterize the molecular features of RSPOfp/RNF43 mutated (mut) compared to wildtype CRCs to gain insights into potential rationales for therapeutic strategies. EXPERIMENTAL DESIGN A discovery cohort was classified for RSPOfp/RNF43 status using DNA/RNA sequencing and immunohistochemistry. An independent cohort was used to validate our findings. RESULTS The discovery cohort consisted of 7,245 CRC samples. RSPOfp and RNF43 mutations were detected in 1.3% (n=94) and 6.1% (n=443) of cases. We found 5 RSPO fusion events that had not previously been reported (e.g. IFNGR1-RSPO3). RNF43-mut tumors were associated with right-sided primary tumors. No RSPOfp tumors had RNF43 mutations. In comparison to wildtype CRCs, RSPOfp tumors were characterized by a higher frequency of BRAF, BMPR1A and SMAD4 mutations. APC mutations were observed in only a minority of RSPOfp-positive compared to wildtype cases (4.4 vs. 81.4%). Regarding RNF43 mutations, a higher rate of KMT2D and BRAF mutations were detectable compared to wildtype samples. While RNF43 mutations were associated with a microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) phenotype (64.3%), and a TMB {greater than or equal to}10 mt/Mb (65.8%), RSPOfp was not associated with MSI-H/dMMR. The validation cohort replicated our genetic findings. CONCLUSIONS This is the largest series of RSPOfp/RNF43-mut CRCs reported to date. Comprehensive molecular analyses asserted the unique molecular landscape associated with RSPO/RNF43 and suggested potential alternative strategies to overcome the low clinical impact of Wnt-targeted agents and immunotherapy

    Characterization of thymocyte phenotypic alterations induced by long-lasting beta-adrenoceptor blockade in vivo and its effects on thymocyte proliferation and apoptosis

    No full text
    Adult male Wistar rats were subjected to propranolol (P, 0.40 mg/100 g/day) or saline (S) administration (controls) over 14 days. The expression of major differentiation molecules on thymocytes and Thy-1 (CD90) molecules, which are shown to adjust thymocyte sensitivity to TCR alpha beta signaling, was studied. In addition, the sensitivity of thymocytes to induction of apoptosis and concanavalin A (Con A) signaling was estimated. The thymocytes from P-treated (PT) rats exhibited an increased sensitivity to induction of apoptosis, as well as to Con A stimulation. Furthermore, P treatment produced changes in the distribution of thymocyte subsets suggesting that more cells passed positive selection and further differentiated into mature CD4+ or CD8+ single positive (SP) TCR alpha beta(high) cells. These changes may, at least partly, be related to the markedly increased density of Thy-1 surface expression on TCR alpha beta(low) thymocytes from these rats. The increased frequency of cells expressing the CD4+25+ phenotype, which has been shown to be characteristic for regulatory cells in the thymus, may also indicate alterations in thymocyte selection following P treatment. Inasmuch as positive and negative selections play an important role in continuously reshaping the T-cell repertoire and maintaining tolerance, the hereby presented study suggests that pharmacological manipulations with beta-AR signaling, or chemically evoked alterations in catecholamine release, may interfere with the regulation of thymocyte selection, and consequently with the immune response

    Without nerves, immunology remains incomplete – in vivo veritas

    No full text
    Interest in the interactions between nervous and immune systems involved in both pathological and homeostatic mechanisms of host defence has prompted studies of neuroendocrine immune modulation and cytokine involvement in neuropathologies. In this review we concentrate on a distinct area of homeostatic control of both normal and abnormal host defence activity involving the network of peripheral c-fibre nerve fibres. These nerve fibres have long been recognized by dermatologists and gastroenterologists as key players in abnormal inflammatory processes, such as dermatitis and eczema. However, the involvement of nerves can all too easily be regarded as that of isolated elements in a local phenomenon. On the contrary, it is becoming increasingly clear that neural monitoring of host defence activities takes place, and that involvement of central/spinal mechanisms are crucial in the co-ordination of the adaptive response to host challenge. We describe studies demonstrating neural control of host defence and use the specific examples of bone marrow haemopoiesis and contact sensitivity to highlight the role of direct nerve fibre connections in these activities. We propose a host monitoring system that requires interaction between specialized immune cells and nerve fibres distributed throughout the body and that gives rise to both neural and immune memories of prior challenge. While immunological mechanisms alone may be sufficient for local responsiveness to subsequent challenge, data are discussed that implicate the neural memory in co-ordination of host defence across the body, at distinct sites not served by the same nerve fibres, consistent with central nervous mediation
    corecore