693 research outputs found

    Identities in the Superintegrable Chiral Potts Model

    Full text link
    We present proofs for a number of identities that are needed to study the superintegrable chiral Potts model in the Q0Q\ne0 sector.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 11 pages, uses eufb10 and eurm10 fonts. Typeset twice! vs2: Two equations added. vs3: Introduction adde

    Spin operator matrix elements in the superintegrable chiral Potts quantum chain

    Full text link
    We derive spin operator matrix elements between general eigenstates of the superintegrable Z_N-symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by R.Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field (N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables Method.Comment: 24 pages, 1 figur

    Factorized finite-size Ising model spin matrix elements from Separation of Variables

    Full text link
    Using the Sklyanin-Kharchev-Lebedev method of Separation of Variables adapted to the cyclic Baxter--Bazhanov--Stroganov or τ(2)\tau^{(2)}-model, we derive factorized formulae for general finite-size Ising model spin matrix elements, proving a recent conjecture by Bugrij and Lisovyy

    Spin operator matrix elements in the quantum Ising chain: fermion approach

    Full text link
    Using some modification of the standard fermion technique we derive factorized formula for spin operator matrix elements (form-factors) between general eigenstates of the Hamiltonian of quantum Ising chain in a transverse field of finite length. The derivation is based on the approach recently used to derive factorized formula for Z_N-spin operator matrix elements between ground eigenstates of the Hamiltonian of the Z_N-symmetric superintegrable chiral Potts quantum chain. The obtained factorized formulas for the matrix elements of Ising chain coincide with the corresponding expressions obtained by the Separation of Variables Method.Comment: 19 page

    The Onsager Algebra Symmetry of τ(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the τ(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Eigenvectors in the Superintegrable Model I: sl_2 Generators

    Full text link
    In order to calculate correlation functions of the chiral Potts model, one only needs to study the eigenvectors of the superintegrable model. Here we start this study by looking for eigenvectors of the transfer matrix of the periodic tau_2(t)model which commutes with the chiral Potts transfer matrix. We show that the degeneracy of the eigenspace of tau_2(t) in the Q=0 sector is 2^r, with r=(N-1)L/N when the size of the transfer matrix L is a multiple of N. We introduce chiral Potts model operators, different from the more commonly used generators of quantum group U-tilde_q(sl-hat(2)). From these we can form the generators of a loop algebra L(sl(2)). For this algebra, we then use the roots of the Drinfeld polynomial to give new explicit expressions for the generators representing the loop algebra as the direct sum of r copies of the simple algebra sl(2).Comment: LaTeX 2E document, 11 pages, 1 eps figure, using iopart.cls with graphicx and iopams packages. v2: Appended text to title, added acknowledgments and made several minor corrections v3: Added reference, eliminated ambiguity, corrected a few misprint

    Bethe Equation of τ(2)\tau^{(2)}-model and Eigenvalues of Finite-size Transfer Matrix of Chiral Potts Model with Alternating Rapidities

    Full text link
    We establish the Bethe equation of the τ(2)\tau^{(2)}-model in the NN-state chiral Potts model (including the degenerate selfdual cases) with alternating vertical rapidities. The eigenvalues of a finite-size transfer matrix of the chiral Potts model are computed by use of functional relations. The significance of the "alternating superintegrable" case of the chiral Potts model is discussed, and the degeneracy of τ(2)\tau^{(2)}-model found as in the homogeneous superintegrable chiral Potts model.Comment: Latex 25 pages; Typos corrected, Minor changes for clearer presentation, References added-Journal versio

    Multi-particle structure in the Z_n-chiral Potts models

    Full text link
    We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi, where \phi is the chiral angle and Q is the Z_n-charge of the respective particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript), BONN-HE-92-3

    Minimal Unitary Models and The Closed SU(2)-q Invariant Spin Chain

    Get PDF
    We consider the Hamiltonian of the closed SU(2)qSU(2)_{q} invariant chain. We project a particular class of statistical models belonging to the unitary minimal series. A particular model corresponds to a particular value of the coupling constant. The operator content is derived. This class of models has charge-dependent boundary conditions. In simple cases (Ising, 3-state Potts) corresponding Hamiltonians are constructed. These are non-local as the original spin chain.Comment: 19 pages, latex, no figure

    Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field

    Get PDF
    We study all known and as yet unknown forces between two neutral atoms, modeled as three dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center of mass motion of the atom, its internal degrees of freedom and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first principle, systematic and unified description including the intrinsic field fluctuations and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces -- London, van der Waals and Casimir-Polder forces -- between neutral atoms in the long-time limit but also discover the existence of two new types of interatomic forces. The first, a `nonequilibrium force', arises when the field and atoms are not in thermal equilibrium, and the second, which we call an `entanglement force', originates from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure
    corecore