587 research outputs found
Characterization of 1D photonic crystal nanobeam cavities using curved microfiber
We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement
Integrated optical addressing of a trapped ytterbium ion
We report on the characterization of heating rates and photo-induced electric
charging on a microfabricated surface ion trap with integrated waveguides.
Microfabricated surface ion traps have received considerable attention as a
quantum information platform due to their scalability and manufacturability.
Here we characterize the delivery of 435 nm light through waveguides and
diffractive couplers to a single ytterbium ion in a compact trap. We measure an
axial heating rate at room temperature of q/ms and see no
increase due to the presence of the waveguide. Furthermore, the electric field
due to charging of the exposed dielectric outcoupler settles under normal
operation after an initial shift. The frequency instability after settling is
measured to be 0.9 kHz.Comment: 7 pages, 8 figure
Hybrid-learning for social design
Underlying causes of conflict, inequity, and injustice remain deeply entrenched in the lives of people ranging from impoverished villages to overpopulated megalopolises. To help address these complex issues, social design brings together designers from varying disciplines to address the needs of the community. While universities across the world recognize the need to introduce social design pedagogy into their curriculum, many programs remain confined within Western post-graduate education. In response, two multidisciplinary professors initiated a team-taught \u27Design for Social Change\u27 course in an undergraduate design program in Dubai, UAE. Open to students across disciplines, the course followed a hybrid-learning approach to planning, conducting, and evaluating learning activities. The methodology empowered students to determine their project interest, cooperatively build research, and value their diverse skills. This paper introduces the notion of hybrid-learning, collabor-active team-teaching in an interdisciplinary classroom, and applies the methodology to a social design course in the MENA region. This paper has been presented as part of the Tasmeem Exploration Platform during Tasmeem Conference, Doha, 2013
Geospatial analysis and living urban geometry
This essay outlines how to incorporate morphological rules within the exigencies of our technological age. We propose using the current evolution of GIS (Geographical Information Systems) technologies beyond their original representational domain, towards predictive and dynamic spatial models that help in constructing the new discipline of "urban seeding". We condemn the high-rise tower block as an unsuitable typology for a living city, and propose to re-establish human-scale urban fabric that resembles the traditional city. Pedestrian presence, density, and movement all reveal that open space between modernist buildings is not urban at all, but neither is the open space found in today's sprawling suburbs. True urban space contains and encourages pedestrian interactions, and has to be designed and built according to specific rules. The opposition between traditional self-organized versus modernist planned cities challenges the very core of the urban planning discipline. Planning has to be re-framed from being a tool creating a fixed future to become a visionary adaptive tool of dynamic states in evolution
Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities
In this work we study the effect of thin-film deposition on the quality factor (Q) of silicon nanobeam cavities. We observe an average increase in the Q of 38±31% in one sample and investigate the dependence of this increase on the initial nanobeam hole sizes. We note that this process can be used to modify cavities that have larger than optimal hole sizes following fabrication. Additionally, the technique allows the tuning of the cavity mode wavelength and the incorporation of new materials, without significantly degrading Q
Management of cutaneous metastases using electrochemotherapy
Background. Cutaneous metastases may cause considerable discomfort as a consequence of ulceration, oozing, bleeding and pain. Electrochemotherapy has proven to be highly effective in the treatment of cutaneous metastases. Electrochemotherapy utilises pulses of electricity to increase the permeability of the cell membrane and thereby augment the effect of chemotherapy. For the drug bleomycin, the effect is enhanced several hundred-fold, enabling once-only treatment. The primary endpoint of this study is to evaluate the efficacy of electrochemotherapy as a palliative treatment. Methods. This phase II study is a collaboration between two centres, one in Denmark and the other in the UK. Patients with cutaneous metastases of any histology were included. Bleomycin was administered intratumourally or intravenously followed by application of electric pulses to the tumour site. Results. Fifty-two patients were included. Complete and partial response rate was 68% and 18%, respectively, for cutaneous metastases <3 cm and 8% and 23%, respectively, for cutaneous metastases >3 cm. Treatment was well-tolerated by patients, including the elderly, and no serious adverse events were observed. Conclusions. ECT is an efficient and safe treatment and clinicians should not hesitate to use it even in the elderly
Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution
BACKGROUND: Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. METHODS: Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. RESULTS: Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. CONCLUSIONS: Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model
- …