100 research outputs found

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Molecular Sites for the Positive Allosteric Modulation of Glycine Receptors by Endocannabinoids

    Get PDF
    Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α1, α2 and α3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α1 GlyRs but inhibit α2 and α3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α1 GlyRs, without affecting inhibition of α2 and α3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain

    Physical activity as a treatment for depression: the TREAD randomised trial protocol

    Get PDF
    Depression is one of the most common reasons for consulting a General Practitioner (GP) within the UK. Whilst antidepressants have been shown to be clinically effective, many patients and healthcare professionals would like to access other forms of treatment as an alternative or adjunct to drug therapy for depression. A recent systematic review presented some evidence that physical activity could offer one such option, although further investigation is needed to test its effectiveness within the context of the National Health Service.The aim of this paper is to describe the protocol for a randomised, controlled trial (RCT) designed to evaluate an intervention developed to increase physical activity as a treatment for depression within primary care

    The effects of cognitive therapy versus 'treatment as usual' in patients with major depressive disorder

    Get PDF
    BACKGROUND: Major depressive disorder afflicts an estimated 17% of individuals during their lifetimes at tremendous suffering and costs. Cognitive therapy may be an effective treatment option for major depressive disorder, but the effects have only had limited assessment in systematic reviews. METHODS/PRINCIPAL FINDINGS: Cochrane systematic review methodology, with meta-analyses and trial sequential analyses of randomized trials, are comparing the effects of cognitive therapy versus 'treatment as usual' for major depressive disorder. To be included the participants had to be older than 17 years with a primary diagnosis of major depressive disorder. Altogether, we included eight trials randomizing a total of 719 participants. All eight trials had high risk of bias. Four trials reported data on the 17-item Hamilton Rating Scale for Depression and four trials reported data on the Beck Depression Inventory. Meta-analysis on the data from the Hamilton Rating Scale for Depression showed that cognitive therapy compared with 'treatment as usual' significantly reduced depressive symptoms (mean difference -2.15 (95% confidence interval -3.70 to -0.60; P<0.007, no heterogeneity)). However, meta-analysis with both fixed-effect and random-effects model on the data from the Beck Depression Inventory (mean difference with both models -1.57 (95% CL -4.30 to 1.16; P = 0.26, I(2) = 0) could not confirm the Hamilton Rating Scale for Depression results. Furthermore, trial sequential analysis on both the data from Hamilton Rating Scale for Depression and Becks Depression Inventory showed that insufficient data have been obtained. DISCUSSION: Cognitive therapy might not be an effective treatment for major depressive disorder compared with 'treatment as usual'. The possible treatment effect measured on the Hamilton Rating Scale for Depression is relatively small. More randomized trials with low risk of bias, increased sample sizes, and broader more clinically relevant outcomes are needed

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events
    corecore