46 research outputs found

    Pulse energy packing effects on material transport during laser processing of < 1

    Get PDF
    The effects of energy pulse packing on material transport during single-pulse laser processing of silicon is studied using temporarily shaped pulses with durations from 50 to 150 ns. Six regimes of material transport were identified and disambiguated through energy packing considerations over a range of pulse durations. Energy packing has been shown to shift the interaction to energetically costlier regimes without appreciable benefit in either depth, material removal or crater morphology and quality.The authors would like to thank the UK Technology Strategy Board under project TP14/HVM/6/I/BD5665. The authors acknowledge the EPSRC Centre for Doctoral Training in Photonic Systems Development for their generous support

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Pulsewidth Dependence of the Nonlinear Absorption, Melting Threshold, and Phase Transitions of Silicon Irradiated by 1 Micron Picosecond Pulses

    No full text
    There is interest in the picosecond deposition and redistribution of optical energy in silicon, primarily because of the interest in laser processing of materials and in nonlinear optical device applications. We report a pulsewidth study of (a) the nonlinear absorption, (b) the melting threshold, and (c) the associated morphological changes of crystalline silicon that has been irradiated by pulses of 1 micron radiation from 4 - 260 ps
    corecore