6 research outputs found

    A stable, power scaling, graphene-mode-locked all-fiber oscillator

    Get PDF
    This is the final version. Available from AIP Publishing via the DOI in this record.We report power tunability in a fiber laser mode-locked with a solution-processed filtered graphene film on a fiber connector. 370 fs pulses are generated with output power continuously tunable from 4 up to 52 mW. This is a simple, low-cost, compact, portable, all-fiber ultrafast source for applications requiring environmentally stable, portable sources, such as imaging.European Research Council (ERC)Engineering and Physical Sciences Research Council (EPSRC)Emmanuel College, CambridgeIsaac Newton Trust, Trinity College Cambridg

    A stable, power scaling, graphene-mode-locked all-fiber oscillator

    Get PDF
    We report power tunability in a fiber laser mode-locked with a solution-processed filtered graphene film on a fiber connector. ∼370 fs pulses are generated with output power continuously tunable from ∼4 up to ∼52 mW. This is a simple, low-cost, compact, portable, all-fiber ultrafast source for applications requiring environmentally stable, portable sources, such as imaging.</jats:p

    Graphene saturable absorber power scaling laser

    No full text
    A solution-processed graphene-film coated on a fiber-based connector is used for stable, mode-locked femtosecond-duration pulses with 16 mW average output power

    A stable, power scaling, graphene-mode-locked all-fiber oscillator

    No full text
    We report power tunability in a fiber laser mode-locked with a solution-processed filtered graphene film on a fiber connector. ∼370 fs pulses are generated with output power continuously tunable from ∼4 up to ∼52 mW. This is a simple, low-cost, compact, portable, all-fiber ultrafast source for applications requiring environmentally stable, portable sources, such as imaging

    A stable, power scaling, graphene-mode-locked all-fiber oscillator

    No full text
    © 2017 Author(s). We report power tunability in a fiber laser mode-locked with a solution-processed filtered graphene film on a fiber connector. ∼370 fs pulses are generated with output power continuously tunable from ∼4 up to ∼52 mW. This is a simple, low-cost, compact, portable, all-fiber ultrafast source for applications requiring environmentally stable, portable sources, such as imaging

    Ingestible electronics for diagnostics and therapy

    No full text
    corecore