184 research outputs found

    Ethyl 1-(4-chloro­benz­yl)-3-(4-fluoro­phen­yl)-1H-pyrazole-5-carboxyl­ate

    Get PDF
    In the title compound, C19H16ClFN2O2, the pyrazole ring makes dihedral angles of 5.15 (6) and 77.72 (6)°, with the fluoro­phenyl and chloro­phenyl rings, respectively

    Cytochrome P450 3A Enzymes Are Key Contributors for Hepatic Metabolism of Bufotalin, a Natural Constitute in Chinese Medicine Chansu

    Get PDF
    Bufotalin (BFT), one of the naturally occurring bufodienolides, has multiple pharmacological and toxicological effects including antitumor activity and cardiotoxicity. This study aimed to character the metabolic pathway(s) of BFT and to identify the key drug metabolizing enzyme(s) responsible for hepatic metabolism of BFT in human, as well as to explore the related molecular mechanism of enzymatic selectivity. The major metabolite of BFT in human liver microsomes (HLMs) was fully identified as 5β-hydroxylbufotalin by LC-MS/MS and NMR techniques. Reaction phenotyping and chemical inhibition assays showed that CYP3A4 and CYP3A5 were key enzymes responsible for BFT 5β-hydroxylation. Kinetic analyses demonstrated that BFT 5β-hydroxylation in both HLMs and human CYP3A4 followed the biphasic kinetics, while BFT 5β-hydroxylation in CYP3A5 followed substrate inhibition kinetics. Furthermore, molecular docking simulations showed that BFT could bind on two different ligand-binding sites on both CYP3A4 and CYP3A5, which partially explained the different kinetic behaviors of BFT in CYP3A4 and CYP3A5. These findings are very helpful for elucidating the phase I metabolism of BFT in human and for deeper understanding the key interactions between CYP3A enzymes and bufadienolides, as well as for the development of bufadienolide-type drugs with improved pharmacokinetic and safety profiles

    Case report: Genotype and phenotype of DYNC1H1-related malformations of cortical development: a case report and literature review

    Get PDF
    BackgroundMutations in the dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene are linked to malformations of cortical development (MCD), which may be accompanied by central nervous system (CNS) manifestations. Here, we present the case of a patient with MCD harboring a variant of DYNC1H1 and review the relevant literature to explore genotype-phenotype relationships.Case presentationA girl having infantile spasms, was unsuccessfully administered multiple antiseizure medications and developed drug-resistant epilepsy. Brain magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria. At 4 years-of-age, the patient exhibited severe developmental delay and mental retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene was identified. A search of multiple databases, including PubMed and Embase, using the search strategy DYNC1H1 AND [malformations of cortical development OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified 129 patients from 43 studies (including the case presented herein). A review of these cases showed that patients with DYNC1H1-related MCD had higher risks of epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84) and intellectual disability/developmental delay (OR = 52.64, 95% CI = 16.27, 170.38). Patients with the variants in the regions encoding the protein stalk or microtubule-binding domain had the most prevalence of MCD (95%).ConclusionMCD, particularly pachygyria, is a common neurodevelopmental disorder in patients with DYNC1H1 mutations. Literature searches reveales that most (95%) patients who carried mutations in the protein stalk or microtubule binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds of patients (63%) who carried mutations in the tail domain did not display MCD. Patients with DYNC1H1 mutations may experience central nervous system (CNS) manifestations due to MCD

    Contents lists available at ScienceDirect Forest Ecology and Management

    Get PDF
    journal homepage: www.elsevier.com/locate/foreco A comparative analysis of forest cover and catchment water yield relationship

    A broad-spectrum substrate for the human UDP-glucuronosyltransferases and its use for investigating glucuronidation inhibitors

    Get PDF
    Strong inhibition of the human UDP-glucuronosyltransferase enzymes (UGTs) may lead to undesirable effects, including hyperbilirubinaemia and drugiherb-drug interactions. Currently, there is no good way to examine the inhibitory effects and specificities of compounds toward all the important human UGTs, side-by-side and under identical conditions. Herein, we report a new, broad-spectrum substrate for human UGTs and its uses in screening and characterizing of UGT inhibitors. Following screening a variety of phenolic compound(s), we have found that methylophiopogonanone A (MOA) can be readily O-glucuronidated by all tested human UGTs, including the typical N-glucuronidating enzymes UGT1A4 and UGT2B10. MOA-O-glucuronidation yielded a single mono-O-glucuronide that was biosynthesized and purified for structural characterization and for constructing an LC-UV based MOA-O-glucuronidation activity assay, which was then used for investigating MOA-O-glucuronidation kinetics in recombinant human UGTs. The derived K-m values were crucial for selecting the most suitable assay conditions for assessing inhibitory potentials and specificity of test compound(s). Furthermore, the inhibitory effects and specificities of four known UGT inhibitors were reinvestigated by using MOA as the substrate for all tested UGTs. Collectively, MOA is a broad-spectrum substrate for the human UGTs, which offers a new and practical tool for assessing inhibitory effects and specificities of UGT inhibitors. (C) 2021 Elsevier B.V. All rights reserved.Peer reviewe

    Experimental study of THGEM detector with mini-rim

    Full text link
    The gas gain and energy resolution of single and double THGEM detectors (5{\times}5cm2 effective area) with mini-rims (rim is less than 10{\mu}m) were studied. The maximum gain can reach 5{\times}103 and 2{\times}105 for single and double THGEM respectively, while the energy resolution of 5.9 keV X-ray varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses.All the experiments were investigated in mixture of noble gases(argon,neon) and small content of other gases(iso-butane,methane) at atmospheric pressure.Comment: 4pages,6figures, it has been submitted to Chinese Physics

    Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Get PDF
    Human carboxylesterase 1 (hCE1), one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs) were assayed using D-Luciferin methyl ester (DME) and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA), and ursolic acid (UA) were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22), led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking simulations demonstrated that compound 22 was a potent competitive inhibitor against hCE1-mediated DME hydrolysis. All these findings are very helpful for medicinal chemists to design and develop highly selective and more potent hCE1 inhibitors for biomedical applications

    Bilateral transfer of motor performance as a function of motor imagery training: a systematic review and meta-analysis

    Get PDF
    ObjectiveThe objective of this review was to evaluate the efficacy of mental imagery training (MIT) in promoting bilateral transfer (BT) of motor performance for healthy subjects.Data sourcesWe searched 6 online-databases (Jul-Dec 2022) using terms: “mental practice,” “motor imagery training,” “motor imagery practice,” “mental training,” “movement imagery,” “cognitive training,” “bilateral transfer,” “interlimb transfer,” “cross education,” “motor learning,” “strength,” “force” and “motor performance.”Study selection and data extractionWe selected randomized-controlled studies that examined the effect of MIT on BT. Two reviewers independently determined if each study met the inclusion criteria for the review. Disagreements were resolved through discussion and, if necessary, by a third reviewer. A total of 9 articles out of 728 initially identified studies were chosen for the meta-analysis.Data synthesisThe meta-analysis included 14 studies for the comparison between MIT and no-exercise control (CTR) and 15 studies for the comparison between MIT and physical training (PT).ResultsMIT showed significant benefit in inducing BT compared to CTR (ES = 0.78, 95% CI = 0.57–0.98). The effect of MIT on BT was similar to that of PT (ES = –0.02, 95% CI = –0.15–0.17). Subgroup analyses showed that internal MIT (IMIT) was more effective (ES = 2.17, 95% CI = 1.57–2.76) than external MIT (EMIT) (ES = 0.95, 95% CI = 0.74–1.17), and mixed-task (ES = 1.68, 95% CI = 1.26–2.11) was more effective than mirror-task (ES = 0.46, 95% CI = 0.14–0.78) and normal-task (ES = 0.56, 95% CI = 0.23–0.90). No significant difference was found between transfer from dominant limb (DL) to non-dominant limb (NDL) (ES = 0.67, 95% CI = 0.37–0.97) and NDL to DL (ES = 0.87, 95% CI = 0.59–1.15).ConclusionThis review concludes that MIT can serve as a valuable alternative or supplement to PT in facilitating BT effects. Notably, IMIT is preferable to EMIT, and interventions incorporating tasks that have access to both intrinsic and extrinsic coordinates (mixed-task) are preferred over those that involve only one of the two coordinates (mirror-task or normal-task). These findings have implications for rehabilitation of patients such as stroke survivors

    An ultra-sensitive and easy-to-use assay for sensing human UGT1A1 activities in biological systems

    Get PDF
    The human UDP-glucuronosyltransferase 1A1 (UGT1A1), one of the most essential conjugative enzymes, is responsible for the metabolism and detoxification of bilirubin and other endogenous substances, as well as many different xenobiotic compounds. Deciphering UGT1A1 relevance to human diseases and characterizing the effects of small molecules on the activities of UGT1A1 requires reliable tools for probing the function of this key enzyme in complex biological matrices. Herein, an easy-to-use assay for highly-selective and sensitive monitoring of UGT1A1 activities in various biological matrices, using liquid chromatography with fluorescence detection (LC-FD), has been developed and validated. The newly developed LC-FD based assay has been confirmed in terms of sensitivity, specificity, precision, quantitative linear range and stability. One of its main advantages is lowering the limits of detection and quantification by about 100-fold in comparison to the previous assay that used the same probe substrate, enabling reliable quantification of lower amounts of active enzyme than any other method. The precision test demonstrated that both intra- and inter-day variations for this assay were less than 5.5%. Furthermore, the newly developed assay has also been successfully used to screen and characterize the regulatory effects of small molecules on the expression level of UGT1A1 in living cells. Overall, an easy-to-use LC-FD based assay has been developed for ultra-sensitive UGT1A1 activities measurements in various biological systems, providing an inexpensive and practical approach for exploring the role of UGT1A1 in human diseases, interactions with xenobiotics, and characterization modulatory effects of small molecules on this conjugative enzyme. (c) 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe
    corecore