46 research outputs found

    Systematic Genetic Nomenclature for Type VII Secretion Systems

    Get PDF
    CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological agent of human tuberculosis, Mycobacterium tuberculosis, are protected by an impermeable cell envelope composed of an inner cytoplasmic membrane, a peptidoglycan layer, an arabinogalactan layer, and an outer membrane. This second membrane consists of covalently linked, tightly packed long-chain mycolic acids [1,2] and noncovalently bound shorter lipids involved in pathogenicity [3–5]. To ensure protein transport across this complex cell envelope, mycobacteria use various secretion pathways, such as the SecA1-mediated general secretory pathway [6,7], an alternative SecA2-operated pathway [8], a twin-arginine translocation system [9,10], and a specialized secretion pathway variously named ESAT-6-, SNM-, ESX-, or type VII secretion [11–16]. The latter pathway, hereafter referred to as type VII secretion (T7S), has recently become a large and competitive research topic that is closely linked to studies of host–pathogen interactions of M. tuberculosis [17] and other pathogenic mycobacteria [16]. Molecular details are just beginning to be revealed [18–22] showing that T7S systems are complex machineries with multiple components and multiple substrates. Despite their biological importance, there has been a lack of a clear naming policy for the components and substrates of these systems. As there are multiple paralogous T7S systems within the Mycobacteria and orthologous systems in related bacteria, we are concerned that, without a unified nomenclature system, a multitude of redundant and obscure gene names will be used that will inevitably lead to confusion and hinder future progress. In this opinion piece we will therefore propose and introduce a systematic nomenclature with guidelines for name selection of new components that will greatly facilitate communication and understanding in this rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio

    Parallel multiplicity and error discovery rate (EDR) in microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.</p> <p>Results</p> <p>This study contrasts parallel multiplicity of objectively related tests against the traditional simultaneousness of subjectively related tests and proposes a new assessment called the Error Discovery Rate (EDR) for evaluating multiple test comparisons in microarray experiments. Parallel multiple tests use only the negative genes that parallel the positive genes to control the error rate; while simultaneous multiple tests use the total unchanged gene number for error estimates. Here, we demonstrate that the EDR method exhibits improved performance over other methods in specificity and sensitivity in testing expression data sets with sequence digital expression confirmation, in examining simulation data, as well as for three experimental data sets that vary in the proportion of DEGs. The EDR method overcomes a common problem of previous multiple test procedures, namely that the Type I error rate detection power is low when the total gene number used is large but the DEG number is small.</p> <p>Conclusions</p> <p>Microarrays are extensively used to address many research questions. However, there is potential to improve the sensitivity and specificity of microarray data analysis by developing improved multiple test comparisons. This study proposes a new view of multiplicity in microarray experiments and the EDR provides an alternative multiple test method for Type I error control in microarray experiments.</p

    The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa

    Get PDF
    Background. The Beijing genotype of M. tuberculosis is a virulent strain that is disseminating worldwide and has a strong association with drug resistance. In the Western Cape of South Africa, epidemiological studies have identified the R220 cluster of the Beijing genotype as a major contributor to a recent outbreak of drug-resistant tuberculosis. Although the outbreak is considered to be due to clonal transmission, the relationship among drug resistant isolates has not yet been established. Results. To better understand the evolution of drug resistance among these strains, 14 drug-resistant clinical isolates of the Beijing genotype were sequenced by whole-genome sequencing, including eight from R220 and six from a more ancestral Beijing cluster, R86, for comparison. While each cluster shares a distinct resistance mutation for isoniazid, mapping of other drug-resistance mutations onto a phylogenetic tree constructed from single nucleotide polymorphisms shows that resistance mutations to many drugs have arisen multiple times independently within each cluster of isolates. Thus, drug resistance among these isolates appears to be acquired, not clonally derived. This observation suggests that, although the Beijing genotype as a whole might have selective advantages enabling its rapid dissemination, the XDR isolates are relatively less fit and do not propagate well. Although it has been hypothesized that the increased frequency of drug resistance in some Beijing lineages might be caused by a mutator phenotype, no significant shift in synonymous substitution patterns is observed in the genomes. Conclusion. While MDR-TB is spreading by transmission in the Western Cape, our data suggests that further drug resistance (i.e. XDR-TB) at this stage is acquired.Peer Reviewe

    The mycosins of <I>M.tuberculosis</I> H37Rv: A family of subtilisin-like serine proteases.

    No full text
    GesondheidswetenskappeMolekul�re Biologie & MensgenetikaPlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Population structure M. tuberculosis in different settings defines the usefulness of MIRU-VNTR typing.

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]êre Biologie & Mensgenetik

    Towards the understanding the evolution of principle genetic group 2 strains of Mycobacterium tuberculosis.

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] En Kindergesondhei

    Methods in Immunolocalization of Autoantigens

    No full text

    Population Structure of Mycobacterium Tuberculosis in the human host

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]êre Biologie & Mensgenetik

    Population Structure of Mycobacterium Tuberculosis in the human host

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]êre Biologie & Mensgenetik

    Beijing strains: increased pathogenecity in different hosts and different geographical settings

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] En Kindergesondhei
    corecore