21 research outputs found

    Bioactive Hydrogel Marbles

    Get PDF
    Liquid marbles represented a signifcant advance in the manipulation of fuids as they used particle flms to confne liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifcally, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efcient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.Portuguese Foundation for Science and Technology − FCT (Grant Nos SFRH/BD/73174/2010 and SFRH/BD/73172/2010, respectively), from the program POPH/FSE from QREN. The authors would like to acknowledge the support of the European Research Council grant agreement ERC-2014-ADG-669858 for project ATLASinfo:eu-repo/semantics/publishedVersio

    Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages

    No full text
    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages—for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc—are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well

    Biomechanical evaluation of suture-holding properties of native and tissue-engineered articular cartilage.

    No full text
    The purpose of this study was to determine suture-holding properties of tissue-engineered neocartilage relative to native articular cartilage. To this end, suture pull-out strength was quantified for native articular cartilage and for neocartilages possessing various mechanical properties. Suture-holding properties were examined in vitro and in vivo. Neocartilage from bovine chondrocytes was engineered using two sets of exogenous stimuli, resulting in neotissue of different biochemical compositions. Compressive and tensile properties and glycosaminoglycan, collagen, and pyridinoline cross-link contents were assayed (study 1). Suture pull-out strength was compared between neocartilage constructs, and bovine and leporine native cartilage. Uniaxial pull-out test until failure was performed after passing 6-0 Vicryl through each tissue (study 2). Subsequently, neocartilage was implanted into a rabbit model to examine short-term suture-holding ability in vivo (study 3). Neocartilage glycosaminoglycan and collagen content per wet weight reached 4.55 ± 1.62% and 4.21 ± 0.77%, respectively. Tensile properties for neocartilage constructs reached 2.6 ± 0.77% MPa for Young's modulus and 1.39 ± 0.63 MPa for ultimate tensile strength. Neocartilage reached ~ 33% of suture pull-out strength of native articular cartilage. Neocartilage cross-link content reached 50% of native values, and suture pull-out strength correlated positively with cross-link content (R² = 0.74). Neocartilage sutured into rabbit osteochondral defects was successfully maintained for 3 weeks. This study shows that pyridinoline cross-links in neocartilage may be vital in controlling suture pull-out strength. Neocartilage produced in vitro with one-third of native tissue pull-out strength appears sufficient for construct suturing and retention in vivo
    corecore