2,278 research outputs found
Bladder Calculus Following an Unusual Vesical Foreign Body
Bladder calculus following vesical foreign bodies is uncommon. The usual presentation is presence of lower urinary symptoms. Most of these foreign bodies are either left inadvertently after open bladder operations or migrate from adjacent structures. This is a case report of an unusual self inserted foreign body in a female presenting with bladder calculus and diverticulum. Self inserted foreign body, particularly in females, is one of the important causes of bladder stones. Foreign body in the bladder should be suspected in a female patient with chronic lower urinary tract symptoms even in the absence of trauma or intervention
Key Words: Urinary Bladder, Calculus, Foreign bod
Animal modelling for inherited central vision loss.
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans
Fitting Neutrino Physics with a U(1)_R Lepton Number
We study neutrino physics in the context of a supersymmetric model where a
continuous R-symmetry is identified with the total Lepton Number and one
sneutrino can thus play the role of the down type Higgs. We show that
R-breaking effects communicated to the visible sector by Anomaly Mediation can
reproduce neutrino masses and mixing solely via radiative contributions,
without requiring any additional degree of freedom. In particular, a relatively
large reactor angle (as recently observed by the Daya Bay collaboration) can be
accommodated in ample regions of the parameter space. On the contrary, if the
R-breaking is communicated to the visible sector by gravitational effects at
the Planck scale, additional particles are necessary to accommodate neutrino
data.Comment: 19 pages, 3 figures; v2: references added, constraints updated,
overall conclusions unchange
A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones
The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse
Dosimetry-based treatment for Graves' disease.
Objective The aim of this retrospective study was to assess the long-term outcome of a personalized dosimetry approach in Graves' disease aiming to render patients euthyroid from a planned thyroid absorbed dose of 60 Gy.Patients and methods A total of 284 patients with Graves' disease were followed prospectively following administration of radioiodine calculated to deliver an absorbed dose of 60 Gy. Patients with cardiac disease were excluded. Outcomes were analysed at yearly intervals for up to 10 years with a median follow-up of 37.5 months.Results A single radioiodine administration was sufficient to render a patient either euthyroid or hypothyroid in 175 (62%) patients, the remainder requiring further radioiodine. The median radioactivity required to deliver 60 Gy was 77 MBq. Less than 2% patients required 400-600 MBq, the standard activity administered in many centres. In the cohort receiving a single administration, 38, 32 and 26% were euthyroid on no specific thyroid medication at 3, 5 and 10 years, respectively. Larger thyroid volumes were associated with the need for further therapy. The presence of nodules on ultrasonography did not adversely affect treatment outcome.Conclusion A personalized dosimetric approach delayed the long-term onset of hypothyroidism in 26% of patients. This was achieved using much lower administered activities than currently recommended. Future studies will aim to identify those patients who would benefit most from this approach
Decoherence-protected quantum gates for a hybrid solid-state spin register
Protecting the dynamics of coupled quantum systems from decoherence by the
environment is a key challenge for solid-state quantum information processing.
An idle qubit can be efficiently insulated from the outside world via dynamical
decoupling, as has recently been demonstrated for individual solid-state
qubits. However, protection of qubit coherence during a multi-qubit gate poses
a non-trivial problem: in general the decoupling disrupts the inter-qubit
dynamics, and hence conflicts with gate operation. This problem is particularly
salient for hybrid systems, wherein different types of qubits evolve and
decohere at vastly different rates. Here we present the integration of
dynamical decoupling into quantum gates for a paradigmatic hybrid system, the
electron-nuclear spin register. Our design harnesses the internal resonance in
the coupled-spin system to resolve the conflict between gate operation and
decoupling. We experimentally demonstrate these gates on a two-qubit register
in diamond operating at room temperature. Quantum tomography reveals that the
qubits involved in the gate operation are protected as accurately as idle
qubits. We further illustrate the power of our design by executing Grover's
quantum search algorithm, achieving fidelities above 90% even though the
execution time exceeds the electron spin dephasing time by two orders of
magnitude. Our results directly enable decoherence-protected interface gates
between different types of promising solid-state qubits. Ultimately, quantum
gates with integrated decoupling may enable reaching the accuracy threshold for
fault-tolerant quantum information processing with solid-state devices.Comment: This is original submitted version of the paper. The revised and
finalized version is in print, and is subjected to the embargo and other
editorial restrictions of the Nature journa
Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed
Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)
Observation of anomalous decoherence effect in a quantum bath at room temperature
Decoherence of quantum objects is critical to modern quantum sciences and
technologies. It is generally believed that stronger noises cause faster
decoherence. Strikingly, recent theoretical research discovers the opposite
case for spins in quantum baths. Here we report experimental observation of the
anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy
centre in high-purity diamond at room temperature. We demonstrate that under
dynamical decoupling, the double-transition can have longer coherence time than
the single-transition, even though the former couples to the nuclear spin bath
as twice strongly as the latter does. The excellent agreement between the
experimental and the theoretical results confirms the controllability of the
weakly coupled nuclear spins in the bath, which is useful in quantum
information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557
Quark masses and mixings in the RS1 model with a condensing 4th generation
We study the hierarchy of quark masses and mixings in a model based on a
5-dimensional spacetime with constant curvature of Randall-Sundrum type with
two branes, where the Electroweak Symmetry Breaking is caused dynamically by
the condensation of a 4th generation of quarks, due to underlying physics from
the 5D bulk and the first KK gluons. We first study the hierarchy of quark
masses and mixings that can be obtained from purely adjusting the profile
localizations, finding that realistic masses are not reproduced unless non
trivial hierarchies of underlying 4-fermion interactions from the bulk are
included. Then we study global U(1) symmetries that can be imposed in order to
obtain non-symmetric modified Fritzsch-like textures in the mass matrices that
reproduce reasonably well quark masses and CKM mixings.Comment: Minor changes. Version accepted for publication in JHE
InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps.
The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration
- …