111 research outputs found

    A short purification process for quantitative isolation of PrP(Sc) from naturally occurring and experimental transmissible spongiform encephalopathies

    Get PDF
    BACKGROUND: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases affecting both humans and animals. They are associated with post-translational conversion of the normal cellular prion protein (PrP(C)) into a heat- and protease-resistant abnormal isoform (PrP(Sc)). Detection of PrP(Sc) in individuals is widely utilized for the diagnosis of prion diseases. METHODS: TSE brain tissue samples have been processed in order to quantitatively isolate PrP(Sc). The protocol includes an initial homogenization, digestion with proteinase K and salt precipitation. RESULTS: Here we show that over 97 percent of the PrP(Sc) present can be precipitated from infected brain material using this simple salting-out procedure for proteins. No chemically harsh conditions are used during the process in order to conserve the native quality of the isolated protein. CONCLUSION: The resulting PrP(Sc)-enriched preparation should provide a suitable substrate for analyzing the structure of the prion agent and for scavenging for other molecules with which it may associate. In comparison with most methods that exist today, the one described in this study is rapid, cost-effective and does not demand expensive laboratory equipment

    Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease

    Get PDF
    Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5–6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments

    Antihypertensive Drug Guanabenz Is Active In Vivo against both Yeast and Mammalian Prions

    Get PDF
    Background: Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans. [br/] Methodology/Principal Findings: Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of a2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay. GA was then shown to promote ovine PrPSc clearance in a cell-based assay. These effects are very specific as evidenced by the lack of activity of some GA analogues that we generated. GA antiprion activity does not involve its agonist activity on a2-adrenergic receptors as other chemically close anti-hypertensive agents possessing related mechanism of action were found inactive against prions. Finally, GA showed activity in a transgenic mouse-based in vivo assay for ovine prion propagation, prolonging slightly but significantly the survival of treated animals. [br/] Conclusion/Significance: GA thus adds to the short list of compounds active in vivo in animal models for the treatment of prion-based diseases. Because it has been administrated for many years to treat hypertension on a daily basis, without major side-effects, our results suggest that it could be evaluated in human as a potential treatment for prion-based diseases

    In Situ Photodegradation of Incorporated Polyanion Does Not Alter Prion Infectivity

    Get PDF
    Single-stranded polyanions ≥40 bases in length facilitate the formation of hamster scrapie prions in vitro, and polyanions co-localize with PrPSc aggregates in vivo [1], [2]. To test the hypothesis that intact polyanionic molecules might serve as a structural backbone essential for maintaining the infectious conformation(s) of PrPSc, we produced synthetic prions using a photocleavable, 100-base oligonucleotide (PC-oligo). In serial Protein Misfolding Cyclic Amplification (sPMCA) reactions using purified PrPC substrate, PC-oligo was incorporated into physical complexes with PrPSc molecules that were resistant to benzonase digestion. Exposure of these nuclease-resistant prion complexes to long wave ultraviolet light (315 nm) induced degradation of PC-oligo into 5 base fragments. Light-induced photolysis of incorporated PC-oligo did not alter the infectivity of in vitro-generated prions, as determined by bioassay in hamsters and brain homogenate sPMCA assays. Neuropathological analysis also revealed no significant differences in the neurotropism of prions containing intact versus degraded PC-oligo. These results show that polyanions >5 bases in length are not required for maintaining the infectious properties of in vitro-generated scrapie prions, and indicate that such properties are maintained either by short polyanion remnants, other co-purified cofactors, or by PrPSc molecules alone

    Epigenetic dominance of prion conformers

    Get PDF
    Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation

    Protease-Sensitive Conformers in Broad Spectrum of Distinct PrPSc Structures in Sporadic Creutzfeldt-Jakob Disease Are Indicator of Progression Rate

    Get PDF
    The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD

    Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    Get PDF
    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79-10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission

    Allelic Origin of Protease-Sensitive and Protease-Resistant Prion Protein Isoforms in Gerstmann-Sträussler-Scheinker Disease with the P102L Mutation

    Get PDF
    Gerstmann-Sträussler-Scheinker (GSS) disease is a dominantly inherited prion disease associated with point mutations in the Prion Protein gene. The most frequent mutation associated with GSS involves a proline-to-leucine substitution at residue 102 of the prion protein, and is characterized by marked variability at clinical, pathological and molecular levels. Previous investigations of GSS P102L have shown that disease-associated pathological prion protein, or PrPSc, consists of two main conformers, which under exogenous proteolysis generates a core fragment of 21 kDa and an internal fragment of 8 kDa. Both conformers are detected in subjects with spongiform degeneration, whereas only the 8 kDa fragment is recovered in cases lacking spongiosis. Several studies have reported an exclusive derivation of protease-resistant PrPSc isoforms from the mutated allele; however, more recently, the propagation of protease-resistant wild-type PrPSc has been described. Here we analyze the molecular and pathological phenotype of six GSS P102L cases characterized by the presence of 21 and 8 kDa PrP fragments and two subjects with only the 8 kDa PrP fragment. Using sensitive protein separation techniques and Western blots with antibodies differentially recognizing wild-type and mutant PrP we observed a range of PrPSc allelic conformers, either resistant or sensitive to protease treatment in all investigated subjects. Additionally, tissue deposition of protease-sensitive wild-type PrPSc molecules was seen by conventional PrP immunohistochemistry and paraffin-embedded tissue blot. Our findings enlarge the spectrum of conformational allelic PrPSc quasispecies propagating in GSS P102L thus providing a molecular support to the spectrum of disease phenotypes, and, in addition, impact the diagnostic role of PrP immunohistochemistry in prion diseases

    Molecular, Biochemical and Genetic Characteristics of BSE in Canada

    Get PDF
    The epidemiology and possibly the etiology of bovine spongiform encephalopathy (BSE) have recently been recognized to be heterogeneous. In particular, three types [classical (C) and two atypical (H, L)] have been identified, largely on the basis of characteristics of the proteinase K (PK)-resistant core of the misfolded prion protein associated with the disease (PrPres). The present study was conducted to characterize the 17 Canadian BSE cases which occurred prior to November 2009 based on the molecular and biochemical properties of their PrPres, including immunoreactivity, molecular weight, glycoform profile and relative PK sensitivity. Two cases exhibited molecular weight and glycoform profiles similar to those of previously reported atypical cases, one corresponding to H-type BSE (case 6) and the other to L-type BSE (case 11). All other cases were classified as C-type. PK digestion under mild and stringent conditions revealed a reduced protease resistance in both of these cases compared to the C-type cases. With Western immunoblotting, N-terminal-specific antibodies bound to PrPres from case 6 but not to that from case 11 or C-type cases. C-terminal-specific antibodies revealed a shift in the glycoform profile and detected a fourth protein fragment in case 6, indicative of two PrPres subpopulations in H-type BSE. No mutations suggesting a genetic etiology were found in any of the 17 animals by sequencing the full PrP-coding sequence in exon 3 of the PRNP gene. Thus, each of the three known BSE types have been confirmed in Canadian cattle and show molecular characteristics highly similar to those of classical and atypical BSE cases described from Europe, Japan and the USA. The occurrence of atypical cases of BSE in countries such as Canada with low BSE prevalence and transmission risk argues for the occurrence of sporadic forms of BSE worldwide
    • …
    corecore