1,815 research outputs found
Exploring critical risks associated with enterprise cloud computing
While cloud computing has become an increasingly hot topic in the industry, risks associated with the adoption of cloud services have also received growing attention from researchers and practitioners. This paper reports the results of a study that aimed to identify and explore potential risks that organisations may encounter when adopting cloud computing, as well as to assess and prioritise the identified risks. The study adopted a deductive research method based on a cross-sectional questionnaire survey. The questionnaire was distributed to a group of 295 carefully selected and highly experienced IT professionals, of which 39 (13.2 %) responses were collected and analysed. The research findings identified a set of 39 cloud computing risks, which concentrated around diverse operational, organisational, technical, and legal areas. It was identified that the most critical risks were caused by current legal and technical complexity and deficiencies associated with cloud computing, as well as by a lack of preparation and planning of user companies
HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum
The study of fusobacterial virulence factors has dramatically benefited from the creation of various genetic tools for DNA manipulation, including galK-based counterselection for in-frame deletion mutagenesis in Fusobacterium nucleatum, which was recently developed. However, this method requires a host lacking the galK gene, which is an inherent limitation. To circumvent this limitation, we explored the possibility of using the hicA gene that encodes a toxin consisting of a HicAB toxin-antitoxin module in Fusobacterium periodonticum as a new counterselective marker. Interestingly, the full-length hicA gene is not toxic in F. nucleatum, but a truncated hicA gene version lacking the first six amino acids is functional as a toxin. The toxin expression is driven by an rpsJ promoter and is controlled at its translational level by using a theophylline-responsive riboswitch unit. As a proof of concept, we created markerless in-frame deletions in the fusobacterial adhesin radD gene within the F. nucleatum rad operon and the tnaA gene that encodes the tryptophanase for indole production. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of colonies grown on theophylline-added plates and resulted in in-frame deletions in 50% of the screened isolates. This hicA-based counterselection system provides a robust and reliable counterselection in wild-type background F. nucleatum and should also be adapted for use in other bacteria.
IMPORTANCE Fusobacterium nucleatum is an indole-producing human oral anaerobe associated with periodontal diseases, preterm birth, and several cancers. Little is known about the mechanisms of fusobacterial pathogenesis and associated factors, mainly due to the lack of robust genetic tools for this organism. Here, we showed that a mutated hicA gene from Fusobacterium periodonticum expresses an active toxin and was used as a counterselection marker. This hicA-based in-frame deletion system efficiently creates in-frame deletion mutations in the wild-type background of F. nucleatum. This is the first report to use the hicA gene as a counterselection marker in a bacterial genetic study
Persistent fluctuations in stride intervals under fractal auditory stimulation
Copyright @ 2014 Marmelat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.Commission of the European Community and the Netherlands Organisation for Scientific Research
Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.
We report experimental measurements of the dissolution rate of several carbonate minerals in CO2-saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO2-saturated NaCl brines with molalities of up to 5 mol kg(-1). The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO2-saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO2-saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO2-injection into carbonate-mineral saline aquifers
Hsp20 Functions as a Novel Cardiokine in Promoting Angiogenesis via Activation of VEGFR2
Heat shock proteins (Hsps) are well appreciated as intrinsic protectors of cardiomyocytes against numerous stresses. Recent studies have indicated that Hsp20 (HspB6), a small heat shock protein, was increased in blood from cardiomyopathic hamsters. However, the exact source of the increased circulating Hsp20 and its potential role remain obscure. In this study, we observed that the circulating Hsp20 was increased in a transgenic mouse model with cardiac-specific overexpression of Hsp20, compared with wild-type mice, suggesting its origin from cardiomyocytes. Consistently, culture media harvested from Hsp20-overexpressing cardiomyocytes by Ad.Hsp20 infection contained an increased amount of Hsp20, compared to control media. Furthermore, we identified that Hsp20 was secreted through exosomes, independent of the endoplasmic reticulum-Golgi pathway. To investigate whether extracellular Hsp20 promotes angiogenesis, we treated human umbilical vein endothelial cells (HUVECs) with recombinant human Hsp20 protein, and observed that Hsp20 dose-dependently promoted HUVEC proliferation, migration and tube formation. Moreover, a protein binding assay and immunostaining revealed an interaction between Hsp20 and VEGFR2. Accordingly, stimulatory effects of Hsp20 on HUVECs were blocked by a VEGFR2 neutralizing antibody and CBO-P11 (a VEGFR inhibitor). These in vitro data are consistent with the in vivo findings that capillary density was significantly enhanced in Hsp20-overexpressing hearts, compared to non-transgenic hearts. Collectively, our findings demonstrate that Hsp20 serves as a novel cardiokine in regulating myocardial angiogenesis through activation of the VEGFR signaling cascade
Field Emission Properties and Fabrication of CdS Nanotube Arrays
A large area arrays (ca. 40 cm2) of CdS nanotube on silicon wafer are successfully fabricated by the method of layer-by-layer deposition cycle. The wall thicknesses of CdS nanotubes are tuned by controlling the times of layer-by-layer deposition cycle. The field emission (FE) properties of CdS nanotube arrays are investigated for the first time. The arrays of CdS nanotube with thin wall exhibit better FE properties, a lower turn-on field, and a higher field enhancement factor than that of the arrays of CdS nanotube with thick wall, for which the ratio of length to the wall thickness of the CdS nanotubes have played an important role. With increasing the wall thickness of CdS nanotube, the enhancement factorβdecreases and the values of turn-on field and threshold field increase
Loss of RhoB Expression Enhances the Myelodysplastic Phenotype of Mammalian Diaphanous-Related Formin mDia1 Knockout Mice
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1−/−RhoB−/− mice are fertile and develop normally. Relative to age-matched Drf1−/−RhoB+/− mice, the age of myelodysplasia onset was earlier in Drf1−/−RhoB−/− animals—including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1−/−RhoB−/− mice relative to Drf1−/−RhoB+/− mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells
- …