31 research outputs found

    Persistent entanglement in two coupled SQUID rings in the quantum to classical transition - A quantum jumps approach

    Full text link
    We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. The motivation for this work is based on a series of recent papers. In ~[1] we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions of the Duffing oscillator differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy system. Motivated by a wish to explore more experimentally realisable systems we extended our work in [2,3] to an analysis of SQUID rings. In [3] we showed that the two systems share a common feature. That is, when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists. Our analysis in[3] was restricted to the quantum state diffusion unravelling of the master equation - representing unit efficiency heterodyne detection (or ambi-quadrature homodyne detection). Here we show that very similar behaviour occurs using the quantum jumps unravelling of the master equation. Quantum jumps represents a discontinuous photon counting measurement process. Hence, the results presented here imply that such persistent entanglement is independent of measurement process and that our results may well be quite general in nature.Comment: 6 pages, 3 figures. Published as part of a special issue for the 11th International Conference on Squeezed States and Uncertainty Relations/4th Feynman festival in Olomouc 2009 (This paper extends the results presented in arXiv:0909.4488

    Frequency-resolved Monte Carlo

    Get PDF
    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Integrin ÎČ1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo

    Get PDF
    Integrin ÎČ1 is both overexpressed and in an ‘active' conformation in vulval squamous cell carcinomas (VSCCs) compared to matched normal skin. To investigate the significance of integrin ÎČ1 deregulation we stably knocked-down integrin ÎČ1 expression in the VSCC cell line A431. In vitro analysis revealed that integrin ÎČ1 is required for cell adhesion, cell spreading and invasion. However, integrin ÎČ1 is not required for cell growth or activation of FAK and ERK signalling in vitro or in vivo. Strikingly, while control tumours were able to invade the dermis, integrin ÎČ1 knockdown tumours were significantly more encapsulated and less invasive

    From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect

    Full text link
    Lecture at BOSS2011 on relativistic metrology, on clock synchronization, relativistic dynamics and non-inertial frames in Minkowski spacetime, on relativistic atomic physics, on ADM canonical tetrad gravity in asymptotically Minkowskian spacetimes, on the York canonical basis identifying the inertial (gauge) and tidal degrees of freedom of the gravitational field, on the Post-Minkowskian linearization in 3-orthogonal gauges, on the Post-Newtonian limit of matter Hamilton equations, on the possibility to interpret dark matter as a relativistic inertial effect connected with relativistic metrology (i.e. clock synchronization) in Einstein GR.Comment: 90 pages. Lecture at BOSS201

    Macroscopic dark periods without a metastable state.

    No full text
    Published versio
    corecore