15 research outputs found

    KRILL DIET AFFECTS FECAL STRING SETTLING

    No full text
    Free-floating sediment traps used on a transect from Scotia Sea to Weddell Sea collected larger, more degraded, krill faecal strings in the deeper (150 m) than in the 50 or 75 m traps. The smallest faecal strings were only present in the shallower traps. Sinking velocity of smaller faecal strings was - as expected - much lower than for larger ones, with a total range of 50 to 800 m . day-1 for faecal string volumes of 0.007 to 0.53 mm3. Krill feeding largely on diatoms produced faeces with higher settling velocity than those feeding on non-diatom phytoplankton. Smaller krill faecal strings do not leave the upper mixed layer. Potential settling velocities as measured in settling tubes (without turbulence), may in this respect be misleading. Small oval faecal pellets of unknown origin showed relatively high settling velocities (80 to 250 m . day-1 for 0.002 to 0.013 mm3) due to higher compaction and lower form resistance to sinking

    Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (western Moreton Bay, Australia)

    No full text
    Climatic variables, water quality, benthic fluxes, sediment properties, and infauna were measured six times over an annual cycle in a shallow sub-tropical embayment to characterize carbon and nutrient cycling, and elucidate the role of pelagic–benthic coupling. Organic carbon (OC) inputs to the bay are dominated by phytoplankton (mean 74%), followed by catchment inputs (15%), and benthic microalgae (BMA; 9%). The importance of catchment inputs was highly variable and dependent on antecedent rainfall, with significant storage of allochthonous OC in sediments following high flow events and remineralization of this material supporting productivity during the subsequent period. Outputs were dominated by benthic mineralization (mean 59% of total inputs), followed by pelagic mineralization (16%), burial (1%), and assimilation in macrofaunal biomass (2%). The net ecosystem metabolism (NEM = production minus respiration) varied between −4 and 33% (mean 9%) of total primary production, whereas the productivity/respiration (p/r) ranged between 0.96 and 1.5 (mean 1.13). Up to 100% of the NEM is potentially removed via the demersal detritivore pathway. Dissolved inorganic nitrogen (DIN) inputs from the catchment contributed less than 1% of the total phytoplankton demand, implicating internal DIN recycling (pelagic 23% and benthic 19%) and potentially benthic dissolved organic nitrogen (DON) fluxes (27%) or N fixation (up to 47%) as important processes sustaining productivity. Although phytoplankton dominated OC inputs in this system, BMA exerted strong seasonal controls over benthic DIN fluxes, limiting pelagic productivity when mixing/photic depth approached 1.3. The results of this study suggest low DIN:TOC and net autotrophic NEM may be a significant feature of shallow sub-tropical systems where the mixing/photic depth is consistently less than 4
    corecore