105 research outputs found

    Boreal forest floor greenhouse gas emissions across a Pleurozium schreberi-dominated, wildfire-disturbed chronosequence

    Get PDF
    The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire events that affect ecosystem properties and climate feedbacks including greenhouse gas (GHG) emissions. Improved understanding of boreal forest floor processes is needed to predict the impacts of anticipated increases in fire frequency, severity, and extent. In this study, we examined relationships between time since last wildfire (TSF), forest floor soil properties, and GHG emissions (CO2, CH4, N2O) along a Pleurozium schreberi-dominated chronosequence in mid- to late succession located in northern Sweden. Over three growing seasons in 2012–2014, GHG flux measurements were made in situ and samples were collected for laboratory analyses. We predicted that P. schreberi-covered forest floor GHG fluxes would be related to distinct trends in the soil properties and microbial community along the wildfire chronosequence. Although we found no overall effect of TSF on GHG emissions, there was evidence that soil C/N, one of the few properties to show a trend with time, was inversely linked to ecosystem respiration. We also found that local microclimatic conditions and site-dependent properties were better predictors of GHG fluxes than TSF. This shows that site-dependent co-variables (that is, forest floor climate and plant-soil properties) need to be considered as well as TSF to predict GHG emissions as wildfires become more frequent, extensive and severe

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure.

    Get PDF
    Antimicrobial resistance (AMR) is one of the latest issues to galvanise political and financial investment as an emerging global health threat. This paper explores the construction of AMR as a problem, following three lines of analysis. First, an examination of some of the ways in which AMR has become an object for action-through defining, counting and projecting it. Following Lakoff's work on emerging infectious diseases, the paper illustrates that while an 'actuarial' approach to AMR may be challenging to stabilise due to definitional and logistical issues, it has been successfully stabilised through a 'sentinel' approach that emphasises the threat of AMR. Second, the paper draws out a contrast between the way AMR is formulated in terms of a problem of connectedness-a 'One Health' issue-and the frequent solutions to AMR being focused on individual behaviour. The paper suggests that AMR presents an opportunity to take seriously connections, scale and systems but that this effort is undermined by the prevailing tendency to reduce health issues to matters for individual responsibility. Third, the paper takes AMR as a moment of infrastructural inversion (Bowker and Star) when antimicrobials and the work they do are rendered more visible. This leads to the proposal of antibiotics as infrastructure-part of the woodwork that we take for granted, and entangled with our ways of doing life, in particular modern life. These explorations render visible the ways social, economic and political frames continue to define AMR and how it may be acted upon, which opens up possibilities for reconfiguring AMR research and action

    Conducting Polymer Alloy

    No full text

    Electrical Transport and Magnetoconductivity in Doped Polypyrrole

    No full text
    • 

    corecore