6 research outputs found
Breeding Cold-Tolerant Crops
Low-temperature stress is considered as the major abiotic constraint limiting plant\u2019s growth and the potential land cultivation. Crop adaptation to limiting temperature is thus an important breeding objective because it determines yield stability in environment-friendly cultivation practices. Conventional breeding methods had limited success in improving the cold tolerance of important crop plants because of the complexity of stress tolerance traits, low genetic variance, and lack of efficient selection criteria. The knowledge of physiology, of genetics, and of the DNA technology has improved substantially nowadays, and these advancements will allow the breeder to predict the breeding value of best genotypes by using physiology, genetics, and molecular information. The perspective for selecting more effectively cold-tolerant crops will involve efficient genotyping, reliable phenotyping and envirotyping, and adequate statistical models
Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
Crop yield reduction as a consequence of increasingly severe climatic events threatens global food security. Genetic loci that ensure productivity in challenging environments exist within the germplasm of crops, their wild relatives and species that are adapted to extreme environments. Selective breeding for the combination of beneficial loci in germplasm has improved yields in diverse environments throughout the history of agriculture. An effective new paradigm is the targeted identification of specific genetic determinants of stress adaptation that have evolved in nature and their precise introgression into elite varieties. These loci are often associated with distinct regulation or function, duplication and/or neofunctionalization of genes that maintain plant homeostasis