12 research outputs found

    Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males.</p> <p>Methods</p> <p>A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of <it>Anopheles gambiae</it>. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1) proportion of ovipositing females, (2) proportion of ovipositing females that produced larvae, (3) proportion of females that produced larvae, (4) number of eggs laid per female, (5) number of larvae per ovipositing female and (6) number of larvae per female.</p> <p>Results</p> <p>The proportion of ovipositing females (trait 1) and the proportion of ovipositing females that produced larvae (trait 2) differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners.</p> <p>Conclusion</p> <p>The first study to quantify genetic variation for male reproductive success in <it>A. gambiae </it>found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae) had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female) did not.</p

    Cost of Mating and Insemination Capacity of a Genetically Modified Mosquito Aedes aegypti OX513A Compared to Its Wild Type Counterpart

    Get PDF
    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT is becoming increasingly popular. In this paper we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with its wild type counterpart with respect to their insemination capacities and the cost of courtship and mating. Genetically modified males inseminated just over half as many females as the wild type males during their lifetime. Providing days of rest from mating had no significant effect on the total number of females inseminated by males of either line, but it did increase their longevity. Producing sperm had a low cost in terms of energy investment; the cost of transferring this sperm to a receptive female was much higher. Continued mating attempts with refractory females suggest that males could not identify refractory females before investing substantial energy in courtship. Although over a lifetime OX513A males inseminated fewer females, the number of females inseminated over the first three days, was similar between males of the two lines, suggesting that the identified cost of RIDL may have little impact on the outcome of SIT-based control programmes with frequent releases of the genetically modified males

    Intra-specific variation of sperm length in the malaria vector Anopheles gambiae: males with shorter sperm have higher reproductive success

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-specific variation in sperm length influences male reproductive success in several species of insects. In males of the malaria vector <it>Anopheles gambiae</it>, sperm length is highly variable but the significance of this variation is unknown. Understanding what determines the reproductive success of male mosquitoes is critical for controlling malaria, and in particular for replacing natural populations with transgenic, malaria-resistant mosquitoes.</p> <p>Methods</p> <p>A laboratory population of <it>A. gambiae </it>males was tested for intra-specific variation in sperm length. A full-sib quantitative genetic design was used to test for a genetic component of sperm length in <it>A. gambiae </it>males and estimate its heritability. This study also tested for a relationship between sperm length and male reproductive success in <it>A. gambiae</it>. Male reproductive success was measured as the proportions of inseminated and ovipositing females.</p> <p>Results</p> <p>There was intra-specific variation of sperm length in <it>A. gambiae</it>. There was no significant genetic variation in sperm length and its heritability was low (h<sup>2 </sup>= 0.18) compared to other insects. Sperm length was correlated with male body size (measured as wing length). Males with short sperm had significantly higher reproductive success than males with long sperm and this was independent of body size.</p> <p>Conclusion</p> <p>This is the first study to demonstrate intra-specific variation in sperm length in <it>A. gambiae </it>and that males with short sperm have higher reproductive success. That sperm length influences female oviposition is important for any strategy considering the release of transgenic males.</p

    Genetic basis of triatomine behavior: lessons from available insect genomes

    Full text link

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    The Physiology of the Vestibular Nuclei

    No full text
    corecore