5 research outputs found

    High Speed Blanking: An Experimental Method to Measure Induced Cutting Forces

    Get PDF
    Lien vers la version éditeur: http://link.springer.com/article/10.1007/s11340-013-9738-1A new blanking process that involves punch speed up to 10 ms −1 has obvious advantages in increased productivity. However, the inherent dynamics of such a process makes it difficult to develop a practical high speed punch press. The fracture phenomenon governing the blanking process has to be well understood to correctly design the machine support and the tooling. To observe this phenomenon at various controlled blanking speeds a specific experimental device has been developed. The goal is to measure accurately the shear blanking forces imposed on the specimen during blanking. In this paper a new method allowing the blanking forces to be measured and taking into account the proposed test configuration is explained. This technique has been used to determine the blanking forces experienced when forming C40 steel and quantifies the effect of process parameters such as punch die clearance, punch speed, and sheet metal thickness on the blanking force evolution

    Cisaillage à grande vitesse : des essais à la simulation

    No full text
    To increase their productivity, blanking professionals are interested by an emerging process: the high speed blanking. For this process, the punch speed reaches10m/s whereas this speed does not exceed 0,1m/s for conventional blanking process. However, even if the quality of the obtained surfaces is close to those obtained with fine blanking, the occurence of hard dynamic phenomena makes difficult the deployment of the high speed blanking process. This work proposes to better control this process using experimentations and numerical simulations. An instrumented device has been designed to observe in detail the existing phenomenon during cutting. This device is similar to the industrial one. It includes a punch with non-constant sections and a matrix linked to an Hopkinson's tube in order to measure the blanking cutting forces. This measure requires a specific treatment to correct dynamic effects present in the matrix during the cutting. This treatment, which uses a calibration of the device, was validated thanks to a one-dimensional numerical model. Many observations made on the blanked surfaces have shown that adiabatic shear bands (ASB) can take place. A thermo-mechanical constitutive model (Johnson-Cook's law) of the C40 steel has been identified and used into simulations to reproduce real experimentations. The used simulation is based on a C-NEM approach (Constrained Natural Element Method). A comparative study between simulation and experimental results has been done. Results show a good correlation with experimental tests.Afin d'augmenter leur productivité, certains industriels de la découpe mécanique s'intéressent à un procédé émergeant : le cisaillage grande vitesse. Pour ce procédé, la vitesse du poinçon atteint 10m/s alors que cette vitesse ne dépasse pas 0,1 m/s pour le cisaillage conventionnel. Cependant, même si la qualité des découpes obtenues se rapproche celle du cisaillage fin, l'apparition de phénomènes dynamiques mal compris rend aujourd'hui délicat le déploiement du cisaillage grande vitesse. Dans ce travail de thèse nous proposons d'aller vers une meilleure maîtrise de ce procédé en utilisant aussi bien des moyens expérimentaux que numériques. Ainsi un dispositif expérimental instrumenté a été mis au point afin d'observer finement les phénomènes présents lors de la découpe. Ce dispositif conserve des similitudes avec les moyens industriels et comprend notamment un poinçon dont la section varie et une matrice solidaire d'un tube de Hopkinson pour la mesure des efforts de cisaillage. Cette mesure a comprend un traitement spécifique afin de corriger des effets dynamiques présents dans la matrice. Ce traitement, qui nécessite une calibration du banc, a été validé grâce à une modélisation numérique unidimensionnelle. Des observations du faciès de rupture ont permis de mettre en évidence la présence de bandes de cisaillement adiabatiques, signature d'une augmentation localisée importante de la température. Par ailleurs, une modélisation thermomécanique du comportement de l'acier C40 (loi de Johnson-Cook) a été réalisée et utilisée dans un code de simulation utilisant une approche C-NEM (Constrained Natural Element Method) pour reproduire les cisaillages observés sur le banc. Une étude comparative simulation/expérimentation a ainsi pu être effectuée

    Cisaillage à grande vitesse : des essais à la simulation

    No full text
    To increase their productivity, blanking professionals are interested by an emerging process: the high speed blanking. For this process, the punch speed reaches10m/s whereas this speed does not exceed 0,1m/s for conventional blanking process. However, even if the quality of the obtained surfaces is close to those obtained with fine blanking, the occurence of hard dynamic phenomena makes difficult the deployment of the high speed blanking process. This work proposes to better control this process using experimentations and numerical simulations. An instrumented device has been designed to observe in detail the existing phenomenon during cutting. This device is similar to the industrial one. It includes a punch with non-constant sections and a matrix linked to an Hopkinson's tube in order to measure the blanking cutting forces. This measure requires a specific treatment to correct dynamic effects present in the matrix during the cutting. This treatment, which uses a calibration of the device, was validated thanks to a one-dimensional numerical model. Many observations made on the blanked surfaces have shown that adiabatic shear bands (ASB) can take place. A thermo-mechanical constitutive model (Johnson-Cook's law) of the C40 steel has been identified and used into simulations to reproduce real experimentations. The used simulation is based on a C-NEM approach (Constrained Natural Element Method). A comparative study between simulation and experimental results has been done. Results show a good correlation with experimental tests.Afin d'augmenter leur productivité, certains industriels de la découpe mécanique s'intéressent à un procédé émergeant : le cisaillage grande vitesse. Pour ce procédé, la vitesse du poinçon atteint 10m/s alors que cette vitesse ne dépasse pas 0,1 m/s pour le cisaillage conventionnel. Cependant, même si la qualité des découpes obtenues se rapproche celle du cisaillage fin, l'apparition de phénomènes dynamiques mal compris rend aujourd'hui délicat le déploiement du cisaillage grande vitesse. Dans ce travail de thèse nous proposons d'aller vers une meilleure maîtrise de ce procédé en utilisant aussi bien des moyens expérimentaux que numériques. Ainsi un dispositif expérimental instrumenté a été mis au point afin d'observer finement les phénomènes présents lors de la découpe. Ce dispositif conserve des similitudes avec les moyens industriels et comprend notamment un poinçon dont la section varie et une matrice solidaire d'un tube de Hopkinson pour la mesure des efforts de cisaillage. Cette mesure a comprend un traitement spécifique afin de corriger des effets dynamiques présents dans la matrice. Ce traitement, qui nécessite une calibration du banc, a été validé grâce à une modélisation numérique unidimensionnelle. Des observations du faciès de rupture ont permis de mettre en évidence la présence de bandes de cisaillement adiabatiques, signature d'une augmentation localisée importante de la température. Par ailleurs, une modélisation thermomécanique du comportement de l'acier C40 (loi de Johnson-Cook) a été réalisée et utilisée dans un code de simulation utilisant une approche C-NEM (Constrained Natural Element Method) pour reproduire les cisaillages observés sur le banc. Une étude comparative simulation/expérimentation a ainsi pu être effectuée

    Cisaillage à grande vitesse (des essais à la simulation)

    No full text
    Afin d'augmenter leur productivité, certains industriels de la découpe mécanique s'intéressent à un procédé émergeant : le cisaillage grande vitesse. Pour ce procédé, la vitesse du poinçon atteint 10m/s alors que cette vitesse ne dépasse pas 0,1 m/s pour le cisaillage conventionnel. Cependant, même si la qualité des découpes obtenues se rapproche celle du cisaillage fin, l'apparition de phénomènes dynamiques mal compris rend aujourd'hui délicat le déploiement du cisaillage grande vitesse. Dans ce travail de thèse nous proposons d'aller vers une meilleure maîtrise de ce procédé en utilisant aussi bien des moyens expérimentaux que numériques. Ainsi un dispositif expérimental instrumenté a été mis au point afin d'observer finement les phénomènes présents lors de la découpe. Ce dispositif conserve des similitudes avec les moyens industriels et comprend notamment un poinçon dont la section varie et une matrice solidaire d'un tube de Hopkinson pour la mesure des efforts de cisaillage. Cette mesure a comprend un traitement spécifique afin de corriger des effets dynamiques présents dans la matrice. Ce traitement, qui nécessite une calibration du banc, a été validé grâce à une modélisation numérique unidimensionnelle. Des observations du faciès de rupture ont permis de mettre en évidence la présence de bandes de cisaillement adiabatiques, signature d'une augmentation localisée importante de la température. Par ailleurs, une modélisation thermomécanique du comportement de l'acier C40 (loi de Johnson-Cook) a été réalisée et utilisée dans un code de simulation utilisant une approche C-NEM (Constrained Natural Element Method) pour reproduire les cisaillages observés sur le banc. Une étude comparative simulation/expérimentation a ainsi pu être effectuée.To increase their productivity, blanking professionals are interested by an emerging process: the high speed blanking. For this process, the punch speed reaches10m/s whereas this speed does not exceed 0,1m/s for conventional blanking process. However, even if the quality of the obtained surfaces is close to those obtained with fine blanking, the occurence of hard dynamic phenomena makes difficult the deployment of the high speed blanking process. This work proposes to better control this process using experimentations and numerical simulations. An instrumented device has been designed to observe in detail the existing phenomenon during cutting. This device is similar to the industrial one. It includes a punch with non-constant sections and a matrix linked to an Hopkinson's tube in order to measure the blanking cutting forces. This measure requires a specific treatment to correct dynamic effects present in the matrix during the cutting. This treatment, which uses a calibration of the device, was validated thanks to a one-dimensional numerical model. Many observations made on the blanked surfaces have shown that adiabatic shear bands (ASB) can take place. A thermo-mechanical constitutive model (Johnson-Cook's law) of the C40 steel has been identified and used into simulations to reproduce real experimentations. The used simulation is based on a C-NEM approach (Constrained Natural Element Method). A comparative study between simulation and experimental results has been done. Results show a good correlation with experimental tests.PARIS-Arts et Métiers (751132303) / SudocSudocFranceF
    corecore