158 research outputs found

    The Impact of Race, School Diversity and Racial Congruence on School Connectedness

    Get PDF
    School connectedness, encompassing positive feelings toward teachers and peers and a sense of belonging at school, has been touted as a critical factor in promoting student achievement and reducing youth risk behaviors. The literature has been mixed in terms of understanding the relationship between race, racial congruence and school diversity’s influence on school connectedness, particularly for youth of color. The current study examines the effect of these variables on self reported feelings of school connectedness in a sample of 8,787 seventh grade students from 56 middle schools in one racially diverse school system. Multi-level modeling revealed that socioeconomic status and school racial diversity accounted for a significant portion of the variance in school connectedness. Controlling for these school level effects, race had a moderating effect on the relationship between racial congruence and school connectedness. Implications of these preliminary results on promoting school connectedness for youth of color are discussed

    Accumulation Hole Layer in p-GaN/AlGaN Heterostructures

    Get PDF
    We present the results on piezoelectric and pyroelectricdoping in AlGaN-on-GaN and GaN-on-AlGaN heterostructures and demonstrate p-GaN/AlGaN structures with accumulation hole layer. Our results indicate that polarization charge can induce up to 5×1013 cm−2 holes at the AlGaN/GaN heterointerfaces. We show that the transition from three-dimensional (3D) to two-dimensional (2D) hole gas can be only achieved for hole sheet densities on the order of 1013 cm−2 or higher. At lower densities, only 3D-hole accumulation layer may exist. These results suggest that a piezoelectrically induced 2D-hole gas can be used for the reduction of the base spreading resistance in AlGaN/GaN-based heterostructurebipolar transistors

    Estrogen-Dependent Expression and Subcellular Localization of the Tight Junction Protein Claudin-4 in HEC-1A Endometrial Cancer Cells

    Get PDF
    Endometrial cancer is the most common female reproductive cancer in the United States and is associated with deregulated tight junction protein expression. Given the highly estrogen-responsive nature of this tissue, we investigated the effects of estrogen and its agonist, 4-OH TAM, on the expression and subcellular localization of the tight junction protein claudin-4 (CLDN-4), in HEC-1A endometrial cancer cells. In untreated HEC-1A cells, we observed dramatic overexpression of claudin-4 protein. In addition, differential detergent extraction analysis indicated that claudin-4 was localized primarily in the membrane but also found in the cytosolic, nuclear and cytoskeletal fractions. Upon exposure of HEC-1A to estradiol (E2), we observed a biphasic effect both on the overall expression of claudin-4 protein and on its cytosolic and cytoskeletal presence as demonstrated by immunoblot analysis. Immunofluorescence analysis also revealed a biphasic effect of E2 on claudin-4 expression. In contrast, we observed no changes in expression levels nor in the subcellular distribution patterns of claudin-4 in HEC-1A cells treated with different concentrations of 4-OH TAM. The intracellular presence of CLDN-4 coupled with the biphasic effects of E2 on CLDN-4 expression in the cytoskeleton suggest that this protein may be involved in cell signaling to and from TJs

    Si\u3csub\u3e3\u3c/sub\u3eN\u3csub\u3e4\u3c/sub\u3e/AlGaN/GaN-Metal-Insulator-Semiconductor Heterostructure Field-Effect Transistors

    Get PDF
    We report on a metal–insulator–semiconductor heterostructurefield-effect transistor (MISHFET) using Si3N4 film simultaneously for channel passivation and as a gate insulator. This design results in increased radio-frequency (rf) powers by reduction of the current collapse and it reduces the gate leakage currents by four orders of magnitude. A MISHFET room temperature gate current of about 90 pA/mm increases to only 1000 pA/mm at ambient temperature as high as 300 °C. Pulsed measurements show that unlike metal–oxide–semiconductor HFETs and regular HFETs, in a Si3N4 MISHFET, the gate voltage amplitude required for current collapse is much higher than the threshold voltage. Therefore, it exhibits significantly reduced rf current collapse

    AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors on SiC Substrates

    Get PDF
    We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 °Cwith excellent pinch-off characteristics. These results clearly establish the potential of using AlGaN/GaN MOS-HFET approach for high power microwave and switching devices

    Maximum Current in Nitride-Based Heterostructure Field-Effect Transistors

    Get PDF
    We present experimental and modeling results on the gate-length dependence of the maximum current that can be achieved in GaN-based heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs (MOSHFETs). Our results show that the factor limiting the maximum current in the HFETs is the forward gate leakage current. In the MOSHFETs, the gate leakage current is suppressed and the overflow of the two dimensional electron gas into the AlGaN barrier region becomes the most important factor limiting the maximum current. Therefore, the maximum current is substantially higher in MOSHFETs than in HFETs. The measured maximum current increases with a decrease in the gate length, in qualitative agreement with the model that accounts for the velocity saturation in the channel and for the effect of the source series resistance. The maximum current as high as 2.6 A/mm can be achieved in MOSHFETs with a submicron gate

    Selective Area Deposited Blue GaN-InGaN Multiple-Quantum Well Light Emitting Diodes over Silicon Substrates

    Get PDF
    We report on fabrication and characterization of blue GaN–InGaN multi-quantum well (MQW)light-emitting diodes(LEDs) over (111) silicon substrates. Device epilayers were fabricated using unique combination of molecular beam epitaxy and low-pressure metalorganic chemical vapor depositiongrowth procedure in selective areas defined by openings in a SiO2mask over the substrates. This selective area deposition procedure in principle can produce multicolor devices using a very simple fabrication procedure. The LEDs had a peak emission wavelength of 465 nm with a full width at half maximum of 40 nm. We also present the spectral emission data with the diodes operating up to 250 °C. The peak emission wavelengths are measured as a function of both dc and pulse bias current and plate temperature to estimate the thermal impedance

    High-Quality p-n Junctions with Quaternary AlInGaN/InGaN Quantum Wells

    Get PDF
    We report on quaternary AlInGaN/InGaN multiple quantum well(MQW)light emitting diode structures grown on sapphire substrates. The structures demonstrate high quality of the p–njunctions with quaternary MQW. At low forward bias (below 2 V), the temperature dependent of current–voltage characteristics are exponential with the ideality factor of 2.28, which is in a good agreement with the model of the injected carrier recombination in the space charge region. This ideality factor value is approximately three times lower than for conventional GaN/InGaN light emitting diodes(LEDs). The obtained data indicate the recombination in p–njunction space charge region to be responsible for a current transport in LED structures with quaternary quantum wells. This is in contrast to InGaN based LEDs, where carrier tunneling dominates either because of high doping of the active layer or due to the high density of localized states

    SiO\u3csub\u3e2\u3c/sub\u3e-Passivated Lateral-Geometry GaN Transparent Schottky-Barrier Detectors

    Get PDF
    We report on a transparent Schottky-barrierultraviolet detector on GaN layers over sapphire substrates. Using SiO2 surface passivation, reverse leakage currents were reduced to a value as low as 1 pA at 5 V reverse bias for 200 μm diameter device. The device exhibits a high internal gain, about 50, at low forward biases. The response time (about 15 ns) is RC limited, even in the internal gain regime. A record low level of the noise spectral density, 5×10−23 A2/Hz, was measured at 10 Hz. We attribute this low noise level to the reduced reverse leakage current

    Optical Bandgap Formation in AlInGaN Alloys

    Get PDF
    We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence,photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices
    • …
    corecore