42 research outputs found

    Rapid decline in estimated glomerular filtration rate in sickle cell anemia: Results of a multicenter pooled analysis

    Get PDF
    Chronic kidney disease (CKD), typically defined as kidney damage or decreased kidney function for 3 or more months, is common in sickle cell disease (SCD). Increasing evidence suggests that the glomerulopathy of SCD is progressive. CKD is associated with increased mortality in SCD. Based on single center studies, we previously reported on the high prevalence of rapid decline in kidney function, defined as estimated glomerular filtration rate (eGFR) loss >3.0 mL/min/1.73 m2per year, in SCD. In the present study, we further examine rapid eGFR decline in sickle cell anemia, using a pooled analysis of patients to better characterize factors associated with such decline and its association with mortality

    Rare genetic variants explain missing heritability in smoking

    Get PDF
    Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this ‘missing heritability’. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability (hSNP2) was estimated from 0.13 to 0.28 (s.e., 0.10–0.13) in European ancestries, with 35–74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability (hped2, 0.18–0.34). In the African ancestry samples, hSNP2 was estimated from 0.03 to 0.33 (s.e., 0.09–0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 Ă— 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes
    corecore