3,055 research outputs found

    Determination of the Higgs boson spin with a linear e+e- collider

    Get PDF
    The energy dependence of the production cross section of a light Higgs boson is studied at threshold and compared to the expectations of several spin assumptions. Cross section measurements at three centre-of-mass energies with an integrated luminosity of 20 fb-1 allow the confirmation of the scalar nature of the Higgs Boson.Comment: 4 pages (Latex), 4 figures (Postscript

    Measurement of the Charge Ratio of Cosmic Muons using CMS Data

    Get PDF
    We have performed the measurement of the cosmic ray muon charge ratio, as a function of the muon momentum, using data collected by the CMS experiment, exploiting the capabilities of the muon barrel drift tube (DT) chambers. The cosmic muon charge ratio is defined as the ratio of the number of positive- to negative-charge muons. Cosmic ray muons result from the interaction of high-energy cosmic-ray particles (mainly protons and nuclei), entering the upper layers of the atmosphere, with air nuclei. Since these collisions favour positive meson production, there is an asymmetry in the charge composition and more positive muons are expected. The data samples were collected at the \textit{Magnet Test and Cosmic Challenge} (MTCC). While the MTCC itself was a crucial milestone in the CMS detector construction, not having physics studies among its primary goals, it provided the first opportunity to obtain physics results and test the full analysis chain using real data in CMS before the LHC startup, together with a complementary check of the detector performance.Comment: Poster at ICHEP08, Philadelphia, USA, July 2008. 4 page

    Measurement of the Higgs Boson Mass with a Linear e+e- Collider

    Full text link
    The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.Comment: 19 pages, 10 Figure

    Determination of the Higgs boson spin with a linear e+e− collider

    Get PDF
    The energy dependence of the production cross section of a light Higgs boson is studied at threshold and compared to the expectations of several spin assumptions. Cross section measurements at three centre-of-mass energies with an integrated luminosity of 20 fb-1 allow the confirmation of the scalar nature of the Higgs Boson.Facultad de Ciencias Exacta

    Resonant CP Violation in Higgs Radiation at e^+e^- Linear Collider

    Full text link
    We study resonant CP violation in the Higgsstrahlung process e^+e^- -> H_{1,2,3} (Z -> e^+e^-, \mu^+\mu^-) and subsequent decays H_{1,2,3} -> b \bar{b}, \tau^-\tau^+, in the MSSM with Higgs-sector CP violation induced by radiative corrections. At a high-energy e^+e^- linear collider, the recoil-mass method enables one to determine the invariant mass of a fermion pair produced by Higgs decays with a precision as good as 1 GeV. Assuming an integrated luminosity of 100/fb, we show that the production lineshape of a coupled system of neutral Higgs bosons decaying into b\bar{b} quarks is sensitive to the CP-violating parameters. When the Higgs bosons decay into \tau^-\tau^+, two CP asymmetries can be defined using the longitudinal and transverse polarizations of the tau leptons. Taking into account the constraints from electric dipole moments, we find that these CP asymmetries can be as large as 80 %, in a tri-mixing scenario where all three neutral Higgs states of the MSSM are nearly degenerate and mix significantly.Comment: 22 pages, 8 figures, to appear in Phys. Rev.

    Phenomenology of the nMSSM from colliders to cosmology

    Full text link
    Low energy supersymmetric models provide a solution to the hierarchy problem and also have the necessary ingredients to solve two of the most outstanding issues in cosmology: the origin of dark matter and baryonic matter. One of the most attractive features of this framework is that the relevant physical processes are related to interactions at the weak scale and therefore may be tested in collider experiments in the near future. This is true for the Minimal Supersymmetric Standard Model (MSSM) as well as for its extension with the addition of one singlet chiral superfield, the so-called nMSSM. It has been recently shown that within the nMSSM an elegant solution to both the problem of baryogenesis and dark matter may be found, that relies mostly on the mixing of the singlet sector with the Higgs sector of the theory. In this work we review the nMSSM model constraints from cosmology and present the associated collider phenomenology at the LHC and the ILC. We show that the ILC will efficiently probe the neutralino, chargino and Higgs sectors, allowing to confront cosmological observations with computations based on collider measurements. We also investigate the prospects for a direct detection of dark matter and the constraints imposed by the current bounds of the electron electric dipole moment in this model.Comment: 44 pp, 10 figures; Fig.9 replaced; discussion on CP violation extended and references added; few minor additions in text about details of the cut

    Decoupling property of the supersymmetric Higgs sector with four doublets

    Full text link
    In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in Journal of High Energy Physic
    corecore