2,760 research outputs found

    Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons

    Full text link
    Many cognitive processes rely on the ability of the brain to hold sequences of events in short-term memory. Recent studies have revealed that such memory can be read out from the transient dynamics of a network of neurons. However, the memory performance of such a network in buffering past information has only been rigorously estimated in networks of linear neurons. When signal gain is kept low, so that neurons operate primarily in the linear part of their response nonlinearity, the memory lifetime is bounded by the square root of the network size. In this work, I demonstrate that it is possible to achieve a memory lifetime almost proportional to the network size, "an extensive memory lifetime", when the nonlinearity of neurons is appropriately utilized. The analysis of neural activity revealed that nonlinear dynamics prevented the accumulation of noise by partially removing noise in each time step. With this error-correcting mechanism, I demonstrate that a memory lifetime of order N/logNN/\log N can be achieved.Comment: 21 pages, 5 figures, the manuscript has been accepted for publication in Neural Computatio

    Results from Lep I

    Get PDF

    Recent developments in high energy physics

    Get PDF
    Recent results from experiments with solar, atmospheric and accelerator neutrinos are presented. Some of the important results from the LEP and TEVATRON colliders are summarised. (20 refs)

    Neutrinos and our Sun - part 3

    Get PDF
    In the concluding part of the article on Neutrinos and our Sun we discuss the detection of atmospheric neutrinos, their fluxes and zenith angle distributions. Here too one finds discrepancies with theoretical predictions. We discuss how the idea of neutrino oscillations helps resolve both the solar neutrino puzzle (discussed in Part 2) and the discrepancy observed in atmospheric neutrino fluxes. This is followed by a discussion of neutrino masses and the recent confirmation of the neutrino oscillations in the KamLAND experiment

    Coal desulfurization process

    Get PDF
    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur

    The story of large electron positron collider: 1. Fundamental constituents of matter

    Get PDF
    This article does not have an abstract

    Neutrinos and our Sun - part 2

    Get PDF
    In this part we describe the chain of nuclear reactions that fuse protons into helium nuclei in the centres of stars. Neutrinos play an important role in the proton-proton chain and detection of these neutrinos is important for a direct insight into the processes taking place at the centre of the sun. Experiments for the detection of solar neutrinos and the emerging result from them, known as the Solar Neutrino Puzzle, are described. The puzzle refused to go away even with very carefully designed experiments. Its solution came from physics, by reviving the idea of neutrino oscillations, speculated many decades ago. Recent experiments have confirmed these ideas and have enriched our knowledge of these fundamental particles
    corecore