73 research outputs found

    Efecto de extractos metanólicos de romero y del agua de vegetación de la aceituna sobre la estabilidad del aceite de oliva y del aceite de girasol.

    Get PDF
    Effect of methanol extracts of rosemary and olive vegetable water on the stability of olive oil and sunflower oil. Methanol phenolic extracts of dry rosemary leaves and olive vegetable water filtrate, in combination with BHA, were added to olive oil (blend of refined and virgin olive oil, 3 to 1) and to sunflower oil and their antioxidant effects under accelerated conditions were evaluated. Accelerated conditions included the oven test (at 63 °C) and the conductivity method (Rancimat at 120 °C). Frying process at 180 °C was also applied. The methanol phenolic extracts and the BHA were added to each oil at the following concentrations: 200 ppm rosemary extract; 200 ppm olive vegetable water extract; 100 ppm rosemary extract + 100 ppm BHA; 100 ppm vegetable water extract + 100 ppm BHA and 200 ppm BHA. In general, antioxidant effect of phenolic additives of rosemary and of BHA was in the following order: 200 ppm rosemary extract > 100 ppm rosemary extract + 100 ppm BHA > and 200 ppm BHA. The addition of 200 ppm vegetable water extract and 100 ppm vegetable water extract + 100 ppm BHA exhibited similar antioxidant effect to that of 200 ppm BHA.Extractos metanólicos de fenoles de hojas secas de romero y filtrados de agua de vegetación de la aceituna, en combinación con BHA, se añadieron al aceite de oliva (mezcla de aceite de oliva refinado y virgen, 3 a 1) y al aceite de girasol, evaluándose sus efectos antioxidantes usando condiciones aceleradas. Estas condiciones incluyeron el test del horno de oxidación (a 63 °C) y el método de conductividad (Rancimat a 120 °C). También se aplicó al proceso de fritura a 180 °C. Los extractos metanólicos de fenoles y el BHA se añadieron a cada aceite en las siguientes concentraciones: 200 ppm de extracto de romero, 200 ppm de extracto de agua de vegetación de la aceituna, 100 ppm de extracto de romero + 100 ppm de BHA, 100 ppm de extracto de agua de vegetación + 100 ppm de BHA y 200 ppm de BHA. En general, el efecto antioxidante de los aditivos fenólicos de romero y de BHA tuvo el siguiente orden: 200 ppm de extracto de romero > 100 ppm de extracto de romero + 100 ppm de BHA > y 200 ppm de BHA. La adición de 200 ppm de extracto de agua de vegetación y 100 ppm de extracto de agua de vegetación + 100 ppm de BHA mostró un efecto antioxidante similar al de 200 ppm de BHA

    A system of ODEs for a Perturbation of a Minimal Mass Soliton

    Full text link
    We study soliton solutions to a nonlinear Schrodinger equation with a saturated nonlinearity. Such nonlinearities are known to possess minimal mass soliton solutions. We consider a small perturbation of a minimal mass soliton, and identify a system of ODEs similar to those from Comech and Pelinovsky (2003), which model the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, which is in accord with the conclusions of Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a soliton structure, a generic initial perturbation oscillates around the stable family of solitons. For initial data which is expected to disperse, the finite dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit

    Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries

    Get PDF
    BACKGROUND: Many researchers are interested to know if there are any improvements in recent treatment results for metastatic breast cancer in the community, especially for 10- or 15-year survival. METHODS: Between 1981 and 1985, 782 and 580 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries of the Surveillance, Epidemiology, and End Results (SEER) database. The lognormal statistical method to estimate survival was retrospectively validated since the 15-year cause-specific survival rates could be calculated using the standard life-table actuarial method. Estimated rates were compared to the actuarial data available in 2000. Between 1991 and 1995, further 752 and 632 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries. The data were analyzed to estimate the 15-year cause-specific survival rates before the year 2005. RESULTS: The 5-year period (1981–1985) was chosen, and patients were followed as a cohort for an additional 3 years. The estimated 15-year cause-specific survival rates were 7.1% (95% confidence interval, CI, 1.8–12.4) and 9.1% (95% CI, 3.8–14.4) by the lognormal model for the two registries of Connecticut and San Francisco-Oakland respectively. Since the SEER database provides follow-up information to the end of the year 2000, actuarial calculation can be performed to confirm (validate) the estimation. The Kaplan-Meier calculation for the 15-year cause-specific survival rates were 8.3% (95% CI, 5.8–10.8) and 7.0% (95% CI, 4.3–9.7) respectively. Using the 1991–1995 5-year period cohort and followed for an additional 3 years, the 15-year cause-specific survival rates were estimated to be 9.1% (95% CI, 3.8–14.4) and 14.7% (95% CI, 9.8–19.6) for the two registries of Connecticut and San Francisco-Oakland respectively. CONCLUSIONS: For the period 1981–1985, the 15-year cause-specific survival for the Connecticut and the San Francisco-Oakland registries were comparable. For the period 1991–1995, there was not much change in survival for the Connecticut registry patients, but there was an improvement in survival for the San Francisco-Oakland registry patients
    corecore