513 research outputs found

    Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using surrogate models

    Get PDF
    Simulating a binary black hole (BBH) coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios in [1,10][1, 10] and durations corresponding to about 1515 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms {\em not} used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic 2Ym{}_{-2}Y_{\ell m} waveform modes resolved by the NR code up to =8.\ell=8. We compare our surrogate model to Effective One Body waveforms from 5050-300M300 M_\odot for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).Comment: Updated to published version, which includes a section comparing the surrogate and effective-one-body models. The surrogate is publicly available for download at http://www.black-holes.org/surrogates/ . 6 pages, 6 figure

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin 30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all {2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure

    A Numerical Relativity Waveform Surrogate Model for Generically Precessing Binary Black Hole Mergers

    Get PDF
    A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einstein's equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all 77 dimensions of the intrinsic non-eccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of 744744 numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to 0.80.8 and mass ratios up to 22, includes all 4\ell \leq 4 modes, begins about 2020 orbits before merger, and can be evaluated in  50ms\sim~50\,\mathrm{ms}. We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that would otherwise require millions of numerical relativity waveforms, such as parameter inference and tests of general relativity with GW observations.Comment: 10 pages, 5 figures; Added report numbe

    Finite size corrections to the radiation reaction force in classical electrodynamics

    Full text link
    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius RR of a spherically symmetric charge is order R2R^2 rather than order RR in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincar\'e and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.Comment: 4 pages, 2 figure

    Differential Effects of MitoVitE, α-Tocopherol and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in Endothelial Cells Cultured under Conditions Mimicking Sepsis

    Get PDF
    Funding: This research was funded by The British Journal of Anaesthesia/Royal College of Anaesthetists (PhD studentship to Beverley Minter). Acknowledgments: We are very grateful to Professor M.P. Murphy, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK for the generous gift of MitoVitE used in all the experiments, without which this work would not have been possible.Peer reviewedPublisher PD

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure

    Self-force on extreme mass ratio inspirals via curved spacetime effective field theory

    Full text link
    In this series we construct an effective field theory (EFT) in curved spacetime to study gravitational radiation and backreaction effects. We begin in this paper with a derivation of the self-force on a compact object moving in the background spacetime of a supermassive black hole. The EFT approach utilizes the disparity between two length scales, which in this problem are the size of the compact object and the radius of curvature of the background spacetime, to treat the orbital dynamics of the compact object, described as an effective point particle, separately from its tidal deformations. Ultraviolet divergences are regularized using Hadamard's {\it partie finie} to isolate the non-local finite part from the quasi-local divergent part. The latter is constructed from a momentum space representation for the graviton retarded propagator and is evaluated using dimensional regularization in which only logarithmic divergences are relevant for renormalizing the parameters of the theory. As a first important application of this framework we explicitly derive the first order self-force given by Mino, Sasaki, Tanaka, Quinn and Wald. Going beyond the point particle approximation, to account for the finite size of the object, we demonstrate that for extreme mass ratio inspirals the motion of a compact object is affected by tidally induced moments at O(ϵ4)O(\epsilon^4), in the form of an Effacement Principle. The relatively large radius-to-mass ratio of a white dwarf star allows for these effects to be enhanced until the white dwarf becomes tidally disrupted, a potentially O(ϵ2)O(\epsilon^2) process, or plunges into the supermassive black hole. This work provides a new foundation for further exploration of higher order self force corrections, gravitational radiation and spinning compact objects.Comment: 22 pages, 5 figures; references added, revised Appendices B & C, corrected typos, revisions throughout for clarification particularly in Section IV.B; submitted to PR

    Quantum Relativity of Subsystems

    Get PDF
    One of the most basic notions in physics is the partitioning of a system into subsystems, and the study of correlations among its parts. In this work, we explore these notions in the context of quantum reference frame (QRF) covariance, in which this partitioning is subject to a symmetry constraint. We demonstrate that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement. We further demonstrate that subalgebras which commute before imposing the symmetry constraint can translate into non-commuting algebras in a given QRF perspective after symmetry imposition. Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra. Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.Comment: 8+9 pages, 1 figur

    Radiation reaction and gravitational waves in the effective field theory approach

    Full text link
    We compute the contribution to the Lagrangian from the leading order (2.5 post-Newtonian) radiation reaction and the quadrupolar gravitational waves emitted from a binary system using the effective field theory (EFT) approach of Goldberger and Rothstein. We use an initial value formulation of the underlying (quantum) framework to implement retarded boundary conditions and describe these real-time dissipative processes. We also demonstrate why the usual scattering formalism of quantum field theory inadequately accounts for these. The methods discussed here should be useful for deriving real-time quantities (including radiation reaction forces and gravitational wave emission) and hereditary terms in the post-Newtonian approximation (including memory, tail and other causal, history-dependent integrals) within the EFT approach. We also provide a consistent formulation of the radiation sector in the equivalent effective field theory approach of Kol and Smolkin.Comment: 23 pages, 8 figure
    corecore