8,627 research outputs found
Optical deep space communication via relay satellite
The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed
A combinatorial smoothness criterion for spherical varieties
We suggest a combinatorial criterion for the smoothness of an arbitrary
spherical variety using the classification of multiplicity-free spaces,
generalizing an earlier result of Camus for spherical varieties of type .Comment: 14 pages, 2 table
Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models
We investigate the lifting effect of rotation on the thermal evolution of CO
WDs accreting CO-rich matter. We find that rotation induces the cooling of the
accreting star so that the delivered gravitational energy causes a greater
expansion with respect to the standard non-rotating case. The increase in the
surface radius produces a decrease in the surface value of the critical angular
velocity and, therefore, the accreting WD becomes gravitationally unbound
(Roche instability). This occurrence is due to an increase in the total angular
momentum of the accreting WD and depends critically on the amount of specific
angular momentum deposited by the accreted matter. If the specific angular
momentum of the accreted matter is equal to that of the outer layers of the
accreting structure, the Roche instability occurs well before the accreting WD
can attain the physical conditions for C-burning. If the values of both initial
angular velocity and accretion rate are small, we find that the accreting WD
undergoes a secular instability when its total mass approaches 1.4 Msun. At
this stage, the ratio between the rotational and the gravitational binding
energy of the WD becomes of the order of 0.1, so that the star must deform by
adopting an elliptical shape. In this case, since the angular velocity of the
WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss
of rotational energy and angular momentum via GWR. We find that, independent of
the braking efficiency, the WD contracts and achieves the physical conditions
suitable for explosive C-burning at the center so that a type Ia supernova
event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical
Journa
Rotated twisted-mass: a convenient regularization scheme for isospin breaking QCD and QED lattice calculations
We propose a scheme of lattice twisted-mass fermion regularization which is
particularly convenient for application to isospin breaking (IB) QCD and QED
calculations, based in particular on the so called RM123 approach, in which the
IB terms of the action are treated as a perturbation. The main, practical
advantage of this scheme is that it allows the calculation of IB effects on
some mesonic observables, like e.g. the pi+ - pi0 mass splitting, using lattice
correlation functions in which the quark and antiquark fields in the meson are
regularized with opposite values of the Wilson parameter r. These correlation
functions are found to be affected by much smaller statistical fluctuations,
with respect to the analogous functions in which quark and antiquark fields are
regularized with the same value of r. Two numerical application of this scheme,
that we call "rotated twisted-mass", within pure QCD and QCD+QED respectively,
are also provided for illustration.Comment: 17 pages, 2 figure
Scattering of Be and B and the astrophysical S factor
Measurements of scattering of Be at 87 MeV on a melamine (CNH) target and of B at 95 MeV on C were performed. For Be
the angular range was extended over previous measurements and monitoring of the
intensity of the radioactive beam was improved. The measurements allowed us to
check and improve the optical model potentials used in the incoming and
outgoing channels for the analysis of existing data on the proton transfer
reaction N(Be,B)C. The resultslead to an updated
determination of the asymptotic normalization coefficient for the virtual decay
B Be + . We find a slightly larger value,
fm, for the melamine target. This
implies an astrophysical factor, eVb, for the
solar neutrino generating reaction Be(,)B.Comment: 7 pages, 4 figure
Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction
The cross section of the radiative proton capture reaction on the drip line
nucleus 12N was investigated using the Asymptotic Normalization Coefficient
(ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12
MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the
direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction.
The optical potentials used and the DWBA analysis of the proton transfer
reaction are discussed. For the entrance channel, the optical potential was
inferred from an elastic scattering measurement carried out at the same time
with the transfer measurement. From the transfer, we determined the square of
the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb
was obtained for the direct astrophysical S factor at zero energy. Constructive
interference at low energies between the direct and resonant captures leads to
an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was
investigated in relation to the evolution of hydrogen-rich massive Population
III stars, for the role that it may play in the hot pp-chain nuclear burning
processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.
Branching ratios for the beta decay of 21Na
We have measured the beta-decay branching ratio for the transition from 21Na
to the first excited state of 21Ne. A recently published test of the standard
model, which was based on a measurement of the beta-nu correlation in the decay
of 21Na, depended on this branching ratio. However, until now only relatively
imprecise (and, in some cases, contradictory) values existed for it. Our new
result, 4.74(4)%, reduces but does not remove the reported discrepancy with the
standard model.Comment: Revtex4, 2 fig
Spectral-function determination of complex electroweak amplitudes with lattice QCD
We present a novel method to determine on the lattice both the real and imaginary parts of complex electroweak amplitudes involving two external currents and a single hadron or the QCD vacuum in the external states. The method is based on the spectral representation of the relevant time-dependent correlation functions and, by extending the range of applicability of other recent proposals built on the same techniques, overcomes the difficulties related to the analytic continuation from Minkowskian to Euclidean time, arising when intermediate states with energies smaller than the external states contribute to the amplitude. In its simplest form, the method relies on the standard iϵ prescription to regularize the Feynman integrals and at finite ϵ it requires to verify the condition 1/L≪ϵ≪Δ(E), where L is the spatial extent of the lattice and, for any given energy E, Δ(E) represents the typical size of the interval around E in which the hadronic amplitude is significantly varying. In order to illustrate the effectiveness of this approach in a realistic case, we apply the method to evaluate nonperturbatively the hadronic amplitude contributing to the radiative leptonic decay Ds→ℓνℓγ*, working for simplicity with a single lattice ensemble at fixed volume and lattice spacing
- …