20 research outputs found

    The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice

    Get PDF
    There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L-NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1-34] (80 µg/kg/day) or L-NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro-CT, histomorphometry and three-point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co-treatment with L-NAME blocked the action of PTH on blood flow, whereas L-NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co-treatment with L-NAME restricted the PTH-stimulated increase in cortical bone formation but had no clear-cut effects in trabecular bone. Co-treatment with L-NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO-mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone

    Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release. I. Effect of Mg2+.

    Get PDF
    Canine cerebellar membranes were fractionated by differential centrifugation into a crude mitochondrial pellet (P2) and a crude microsomal pellet (P3). The effect of Mg2+ on inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release and [3H]IP3 binding was assessed. Mg2+ inhibited IP3-induced Ca2+ release in a concentration-dependent manner. Mg2+ influenced both the extent of IP3-induced Ca2+ release and the apparent affinity for IP3. A 10-fold change of free Mg2+ (from approximately 30 to approximately 300 microM) reduced the extent of Ca2+ release by two- to threefold and shifted the apparent Michaelis constant from approximately 0.5 to approximately 0.9 microM IP3. Thus Mg2+ seemed to be noncompetitive inhibitor of IP3-induced Ca2+ release. Mg2+ also inhibited Ca2+ release elicited by glycerophosphoinositol 4,5-bisphosphate, a poorly metabolized analogue of IP3. Mg2+ and heparin sodium were shown to be additive inhibitors of IP3-induced Ca2+ release. Mg2+ inhibited [3H]IP3 binding under experimental conditions designed to minimize IP3 hydrolysis. Scatchard plots indicated that 0.5 mM free Mg2+ reduced maximum binding from 10.9 to 3.5 pmol IP3 bound/mg protein and increased the dissociation constant from 136 to 227 nM. The modulation of [3H]IP3 binding and IP3-induced Ca2+ release by Mg2+ could be physiologically relevant
    corecore