292 research outputs found

    Anti-protein C antibodies and acquired protein C resistance in SLE: novel markers for thromboembolic events and disease activity?

    Get PDF
    OBJECTIVES: Risk factors for thromboembolism in SLE are poorly understood. We hypothesized a possible role for protein C, based on its dual activity in inflammation and haemostasis and on the evidence of an association between acquired activated protein C (APC) resistance (APCR) and high-avidity anti-protein C antibodies (anti-PC) with a severe thrombotic phenotype in venous thrombosis APS patients. METHODS: In a cross-sectional study of 156 SLE patients, the presence and avidity of IgG anti-PC was established by in house-ELISA, and APCR to exogenous recombinant human APC (rhAPC) and Protac (which activates endogenous protein C) was assessed by thrombin generation-based assays. Associations with aPL profile, thrombotic history and disease activity (BILAG and SLEDAI-2K) were also established. RESULTS: Anti-PC were detected in 54.5% of patients and APCR in 59%. Anti-PC positivity was associated with APCR to both rhAPC (P <0.0001) and Protac (P =0.0001). High-avidity anti-PC, detected in 26.3% of SLE patients, were associated with APCR in patients with thrombosis only (P <0.05), and with the development of thrombosis over time (range: 0-52 years; P =0.014). High-avidity anti-PC levels correlated with SLEDAI-2K (P =0.033) and total BILAG (P =0.019); SLEDAI-2K correlated inversely with APCR to Protac (P =0.004). CONCLUSION: Anti-PC occur in patients with SLE, independently of aPL profile, and are associated with APCR. High-avidity anti-PC are associated with thrombosis and with active disease and might prove a novel marker to monitor the risk of thrombosis and disease progression in SLE

    Cannabinoid Regulation of Nitric Oxide Synthase I (nNOS) in Neuronal Cells

    Get PDF
    In our previous studies, CB1 cannabinoid receptor agonists stimulated production of cyclic GMP and translocation of nitric oxide (NO)-sensitive guanylyl cyclase in neuronal cells (Jones et al., Neuropharmacology 54:23–30, 2008). The purpose of these studies was to elucidate the signal transduction of cannabinoid-mediated neuronal nitric oxide synthase (nNOS) activation in neuronal cells. Cannabinoid agonists CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), WIN55212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate), and the metabolically stable analog of anandamide, (R)-(+)-methanandamide stimulated NO production in N18TG2 cells over a 20-min period. Rimonabant (N-(piperidin-lyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-H-pyrazole-3-carboxamide), a CB1 receptor antagonist, partially or completely curtailed cannabinoid-mediated NO production. Inhibition of NOS activity (NG-nitro-l-arginine) or signaling via Gi/o protein (pertussis toxin) significantly limited NO production by cannabinoid agonists. Ca2+ mobilization was not detected in N18TG2 cells after cannabinoid treatment using Fluo-4 AM fluorescence. Cannabinoid-mediated NO production was attributed to nNOS activation since endothelial NOS and inducible NOS protein and mRNA were not detected in N18TG2 cells. Bands of 160 and 155 kDa were detected on Western blot analysis of cytosolic and membrane fractions of N18TG2 cells, using a nNOS antibody. Chronic treatment of N18TG2 cells with cannabinoid agonists downregulated nNOS protein and mRNA as detected using Western blot analysis and real-time polymerase chain reaction, respectively. Cannabinoid agonists stimulated NO production via signaling through CB1 receptors, leading to activation of Gi/o protein and enhanced nNOS activity. The findings of these studies provide information related to cannabinoid-mediated NO signal transduction in neuronal cells, which has important implications in the ongoing elucidation of the endocannabinoid system in the nervous system

    The first small-molecule inhibitors of members of the ribonuclease E family

    Get PDF
    The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5′-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E

    Evolutionary tradeoffs in cellular composition across diverse bacteria

    Get PDF
    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Oral contraceptive use and risk of melanoma in premenopausal women

    Get PDF
    Melanoma has been increasing in white populations. Incidence rates rise steeply in women until about age 50, suggesting oestrogen as a possible risk factor. Oestrogens can increase melanocyte count and melanin content and cause hyperpigmentation of the skin. We examined prospectively the association between oral contraceptive (OC) use and diagnoses of superficial spreading and nodular melanoma among 183 693 premenopausal white women in the Nurses’ Health Study (NHS) and the Nurses’ Health Study II (NHS II) cohorts. One hundred and forty six cases were confirmed in NHS during follow-up from 1976 to 1994, and 106 cases were confirmed in NHS II from 1989 to 1995. Skin reaction to sun exposure, sunburn history, mole counts, hair colour, family history of melanoma, parity, height and body mass index were also assessed and included in logistic regression models. A significant twofold increase in risk of melanoma (relative risk (RR) = 2.0, 95% confidence interval (CI) 1.2–3.4) was observed among current OC users compared to never users. Risk was further increased among current users with 10 or more years of use (RR = 3.4, 95% CI 1.7–7.0). Risk did not appear elevated among past OC users, even among those with longer durations of use, and risk did not decline linearly with time since last use. In conclusion, risk of premenopausal melanoma may be increased among women who are current OC users, particularly among those with longer durations of use. Further research is needed to determine whether low-dose oestrogen pills in particular are associated with an increase in risk and to describe possible interactions between OC use and sun exposure or other risk factors for melanoma. © 1999 Cancer Research Campaig
    • …
    corecore