38 research outputs found

    Premature Decline of Serum Total Testosterone in HIV-Infected Men in the HAART-Era

    Get PDF
    BackgroundTestosterone (T) deficiency remains a poorly understood issue in men with Human Immunodeficiency Virus (HIV). We investigated the gonadal status in HIV-infected men in order to characterize T deficiency and to identify predictive factors for low serum T.Methodology/Principal FindingsWe performed a cross-sectional, observational study on 1325 consecutive HIV male outpatients, most of them having lipodystrophy. Serum total T<300 ng/dL was used as the threshold for biochemical T deficiency. Morning serum total T, luteinizing hormone (LH), estradiol, HIV parameters, and body composition parameters by CT-scan and Dual-Energy-X-ray-Absorptiometry were measured in each case. Sexual behavior was evaluated in a subset of 247 patients. T deficiency was found in 212 subjects, especially in the age range 40\u201359, but was frequent even in younger patients. T deficiency occurred mainly in association with low/normal serum LH. Adiposity was higher in subjects with T deficiency (p<0.0001) and both visceral adipose tissue and body mass index were the main negative predictors of serum total T. Osteoporosis and erectile dysfunction were present in a similar percentage in men with or without T deficiency.Conclusions/SignificancePremature decline of serum T is common (16%) among young/middle-aged HIV-infected men and is associated with inappropriately low/normal LH and increased visceral fat. T deficiency occurs at a young age and may be considered an element of the process of premature or accelerated aging known to be associated with HIV infection. The role of HIV and/or HIV infection treatments, as well as the role of the general health state on the gonadal axis, remains, in fact, to be elucidated. Due to the low specificity of signs and symptoms of hypogonadism in the context of HIV, caution is needed in the diagnosis of hypogonadism in HIV-infected men with biochemical low serum T levels

    Localization of Secondary Metabolites in Marine Invertebrates: Contribution of MALDI MSI for the Study of Saponins in Cuvierian Tubules of H. forskali

    Get PDF
    BACKGROUND: Several species of sea cucumbers of the family Holothuriidae possess a particular mechanical defense system called the Cuvierian tubules (Ct). It is also a chemical defense system as triterpene glycosides (saponins) appear to be particularly concentrated in Ct. In the present study, the precise localization of saponins in the Ct of Holothuria forskali is investigated. Classical histochemical labeling using lectin was firstly performed but did not generate any conclusive results. Thus, MALDI mass spectrometry Imaging (MALDI-MSI) was directly applied and completed by statistical multivariate tests. A comparison between the tubules of relaxed and stressed animals was realized. RESULTS: These analyses allowed the detection of three groups of ions, corresponding to the isomeric saponins of the tubules. Saponins detected at m/z 1287 and 1303 were the most abundant and were apparently localized in the connective tissue of the tubules of both relaxed and stressed individuals. Saponins at m/z 1125 and 1141 were detected in lower amount and were present in tissues of relaxed animals. Finally, saponin ions at 1433, 1449, 1463 and 1479 were observed in some Ct of stressed holothuroids in the outer part of the connective tissue. The saponin group m/z 14xx seems therefore to be stress-specific and could originate from modifications of the saponins with m/z of 11xx. CONCLUSIONS: All the results taken together indicate a complex chemical defense mechanism with, for a single organ, different sets of saponins originating from different cell populations and presenting different responses to stress. The present study also reflects that MALDI-MSI is a valuable tool for chemical ecology studies in which specific chemical signalling molecules like allelochemicals or pheromones have to be tracked. This report represents one of the very first studies using these tools to provide a functional and ecological understanding of the role of natural products from marine invertebrates

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio
    corecore