14 research outputs found

    Epilepsy in kcnj10 Morphant Zebrafish Assessed with a Novel Method for Long-Term EEG Recordings.

    Get PDF
    We aimed to develop and validate a reliable method for stable long-term recordings of EEG activity in zebrafish, which is less prone to artifacts than current invasive techniques. EEG activity was recorded with a blunt electrolyte-filled glass pipette placed on the zebrafish head mimicking surface EEG technology in man. In addition, paralysis of agarose-embedded fish using D-tubocurarine excluded movement artifacts associated with epileptic activity. This non-invasive recording technique allowed recordings for up to one hour and produced less artifacts than impaling the zebrafish optic tectum with a patch pipette. Paralyzed fish survived, and normal heartbeat could be monitored for over 1h. Our technique allowed the demonstration of specific epileptic activity in kcnj10a morphant fish (a model for EAST syndrome) closely resembling epileptic activity induced by pentylenetetrazol. This new method documented that seizures in the zebrafish EAST model were ameliorated by pentobarbitone, but not diazepam, validating its usefulness. In conclusion, non-invasive recordings in paralyzed EAST syndrome zebrafish proved stable, reliable and robust, showing qualitatively similar frequency spectra to those obtained from pentylenetetrazol-treated fish. This technique may prove particularly useful in zebrafish epilepsy models that show infrequent or conditional seizure activity

    Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment

    No full text
    Dravet syndrome is a catastrophic pediatric epilepsy with severe intellectual disability, impaired social development and persistent drug-resistant seizures. One of its primary monogenic causes are mutations in Na v 1.1 (SCN1A), a voltage-gated sodium cha

    A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish

    Get PDF
    Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish

    Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment

    No full text
    Dravet syndrome (DS) is a catastrophic pediatric epilepsy with severe intellectual disability, impaired social development and persistent drug-resistant seizures. One of its primary monogenic causes are mutations in Na(v)1.1 (SCN1A), a voltage-gated sodium channel. Here we characterise zebrafish Na(v)1.1 (scn1Lab) mutants originally identified in a chemical mutagenesis screen. Mutants exhibit spontaneous abnormal electrographic activity, hyperactivity and convulsive behaviors. Although scn1Lab expression is reduced, microarray analysis is remarkable for the small fraction of differentially expressed genes (~3%) and lack of compensatory expression changes in other scn subunits. Ketogenic diet, diazepam, valproate, potassium bromide and stiripentol attenuate mutant seizure activity; seven other antiepileptic drugs have no effect. A phenotype-based screen of 320 compounds identifies a US Food and Drug Administration-approved compound (clemizole) that inhibits convulsive behaviors and electrographic seizures. This approach represents a new direction in modeling pediatric epilepsy and could be used to identify novel therapeutics for any monogenic epilepsy disorder
    corecore