23 research outputs found

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters—TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960)—based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (RP = 1.01–1.77 RJ) and have masses that range from 0.85 to 6.33 MJ. The host stars of these systems have F and G spectral types (5595 ≤ Teff ≤ 6460 K) and are all relatively bright (9.5 1.7 RJ, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.310.30+0.28{6.31}_{-0.30}^{+0.28} MJ and a statistically significant, nonzero orbital eccentricity of e = 0.0740.022+0.021{0.074}_{-0.022}^{+0.021}. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    Product Lifecycle Management Strategy for the Definition and Design Process of Face Implants Oriented to Specific Patients

    No full text
    Part 2: Collaborative Environments and New Product DevelopmentInternational audienceThe main purpose of this research was oriented to generate a structured model from an organizational vision to the definition and development of precise osteosynthesis prosthesis. Implants were adapted to the Colombian population anthropometry allowing fracture reductions and craniofacial defects corrections based on technologies for specific patients. This research was developed taking into account the first three PLM stages: Imagination, definition, and realization. Procedures, stages, roles, and activities that take part in the design and pre-surgical planning were identified for the patient-specific implants PSI, carried out through a study case. It was established as a definition model for design and fabrication process of patient-specific implants (PSI). It was possible that technology included in a collaborative workflow wherein the roles which intervene in the design process and the pre-surgical planning were related. The ability to design implants for specific patients and surgical guides was obtained different pathology situations including face trauma. According to the PLM strategy for designing custom implant, it would be possible to build innovation capabilities. With those, an organization could generate a collaborative workflow integrating stages, roles, activities, applying technology and local human resource. Further work related to the subject is necessary to enhance the process by iteration and improve the clinical cases management
    corecore