9 research outputs found

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    Minimal handling and super-binary vectors facilitate efficient, agrobacterium-mediated, transformation of sugarcane (Saccharum spp. hybrid)

    No full text
    Agrobacterium-mediated transformation (AMT) of sugarcane has been limited by low transformation efficiency, high variability between experiments and genotype specificity. We tested combinations of parameters that have been useful in other recalcitrant plant systems, aiming to develop an efficient and reproducible method. Applied to elite sugarcane cultivar Q117, key parameters were (i) minimal handling of callus near the time of co-cultivation, (ii) use of a super-binary helper vector with additional virB,C,G gene copies, and (iii) use of Agrobacterium strain AGL1. Transformation efficiency was in the range 0.5 to 3.5 stably transformed, embryogenic-callus-forming lines per gram fresh weight of co-cultivated callus, over six independent callus batches. Addition of 5 μM copper sulphate to the callus-growth medium appeared beneficial in a single further test. Following selection for aminoglycoside resistance conferred by PUbi-aphA, 87% of transformed lines that formed embryogenic callus were regenerable to plants. Southern blot analysis of 24 transgenic lines showed 21% with a single-copy insertion of an intact T-DNA without vector backbone, and a mean transgene copy number of 2.5. Over multiple batches, the AMT protocol approached the transformation efficiency from our routine conditions for particle bombardment of Q117. However, the same parameters were ineffective for AMT of cultivars Q208 and Q172, and yielded a lower transformation efficiency (0.02) with KQ228. As experienced in other systems such as rice, high-efficiency transformation of one recipient genotype may provide useful starting parameters for work towards AMT of additional genotypes
    corecore