42 research outputs found

    Long-Term Gene Therapy Causes Transgene-Specific Changes in the Morphology of Regenerating Retinal Ganglion Cells

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration

    GABA Expression and Regulation by Sensory Experience in the Developing Visual System

    Get PDF
    The developing retinotectal system of the Xenopus laevis tadpole is a model of choice for studying visual experience-dependent circuit maturation in the intact animal. The neurotransmitter gamma-aminobutyric acid (GABA) has been shown to play a critical role in the formation of sensory circuits in this preparation, however a comprehensive neuroanatomical study of GABAergic cell distribution in the developing tadpole has not been conducted. We report a detailed description of the spatial expression of GABA immunoreactivity in the Xenopus laevis tadpole brain at two key developmental stages: stage 40/42 around the onset of retinotectal innervation and stage 47 when the retinotectal circuit supports visually-guided behavior. During this period, GABAergic neurons within specific brain structures appeared to redistribute from clusters of neuronal somata to a sparser, more uniform distribution. Furthermore, we found that GABA levels were regulated by recent sensory experience. Both ELISA measurements of GABA concentration and quantitative analysis of GABA immunoreactivity in tissue sections from the optic tectum show that GABA increased in response to a 4 hr period of enhanced visual stimulation in stage 47 tadpoles. These observations reveal a remarkable degree of adaptability of GABAergic neurons in the developing brain, consistent with their key contributions to circuit development and function

    Sports-related wrist and hand injuries: a review

    Get PDF

    Maternal high-fat diet prevents developmental programming by early-life stress

    Get PDF
    Anxiety disorders and depression are well-documented in subjects exposed to adverse childhood events. Recently, maternal obesity and/or maternal consumption of high-fat diets (HFD) have been also proposed as risk factors for offspring mental health. Here using an animal model in rats, we explored the combinatorial effects of a maternal HFD (40% of energy from fat without impact on maternal weight; during gestation and lactation) and maternal separation (MS) in offspring. In the prefrontal cortex (PFC) of pups, MS led to changes in the expression of several genes such as Bdnf (brain derived neurotrophic factor), 5HT-r1a (serotonin receptor 1a) and Rest4 (neuron-restrictive silencer element, repressor element 1, silencing transcription factor (Rest), splicing variant 4). Surprisingly, perinatal HFD strongly attenuated the developmental alterations induced by MS. Furthermore, maternal HFD totally prevented the endophenotypes (anxiety, spatial memory, social behavior, hypothalamic–pituitary–adrenal (HPA) axis response to stress, hippocampal neurogenesis and visceral pain) associated with MS at adulthood. Finally, we also demonstrated that HFD intake reduced anxiety and enhanced maternal care in stressed dams. Overall, our data suggest that a HFD restricted to gestation and lactation, which did not lead to overweight in dams, had limited effects in unstressed offspring, highlighting the role of maternal obesity, rather than fat exposure per se, on brain vulnerability during development.Environnement psychosocial précoce, empreintes biologiques et épigénétiques et état de santé à l'âge adult

    9-β-D-Arabinofuranosyladenine (AraA)

    No full text
    corecore