120 research outputs found
Testis and Antler Dysgenesis in Sitka Black-Tailed Deer on Kodiak Island, Alaska: Sequela of Environmental Endocrine Disruption?
It had been observed that many male Sitka black-tailed deer (Odocoileus hemionus sitkensis) on Kodiak Island, Alaska, had abnormal antlers, were cryptorchid, and presented no evidence of hypospadias. We sought to better understand the problem and investigated 171 male deer for phenotypic aberrations and 12 for detailed testicular histopathology. For the low-lying Aliulik Peninsula (AP), 61 of 94 deer were bilateral cryptorchids (BCOs); 70% of these had abnormal antlers. Elsewhere on the Kodiak Archipelago, only 5 of 65 deer were BCOs. All 11 abdominal testes examined had no spermatogenesis but contained abnormalities including carcinoma in situ–like cells, possible precursors of seminoma; Sertoli cell, Leydig cell, and stromal cell tumors; carcinoma and adenoma of rete testis; and microlithiasis or calcifications. Cysts also were evident within the excurrent ducts. Two of 10 scrotal testes contained similar abnormalities, although spermatogenesis was ongoing. We cannot rule out that these abnormalities are linked sequelae of a mutation(s) in a founder animal, followed by transmission over many years and causing high prevalence only on the AP. However, based on lesions observed, we hypothesize that it is more likely that this testis–antler dysgenesis resulted from continuing exposure of pregnant females to an estrogenic environmental agent(s), thereby transforming testicular cells, affecting development of primordial antler pedicles, and blocking transabdominal descent of fetal testes. A browse (e.g., kelp) favored by deer in this locale might carry the putative estrogenic agent(s)
O-GlcNAc-Specific Antibody CTD110.6 Cross-Reacts with N-GlcNAc2-Modified Proteins Induced under Glucose Deprivation
Modification of serine and threonine residues in proteins by O-linked β-N-acetylgulcosamine (O-GlcNAc) glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylgulcosamine transferase (OGT) and β-D-N-acetylgulcosaminase (O-GlcNAcase). O-GlcNAc modification of proteins is dependent on the concentration of uridine 5′-diphospho-N-acetylgulcosamine (UDP-GlcNAc), which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc2, rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc2-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc2-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc2. Our results demonstrated that N-GlcNAc2-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc2-modifed proteins is a newly recognized pathway for effective use of sugar under stress and deprivation conditions. Further research is needed to clarify the physiological and pathological roles of N-GlcNAc2-modifed proteins
Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus)
Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration
Knee-clicks and visual traits indicate fighting ability in eland antelopes: multiple messages and back-up signals
Abstract Background Given the costs of signalling, why do males often advertise their fighting ability to rivals using several signals rather than just one? Multiple signalling theories have developed largely in studies of sexual signals, and less is known about their applicability to intra-sexual communication. We here investigate the evolutionary basis for the intricate agonistic signalling system in eland antelopes, paying particular attention to the evolutionary phenomenon of loud knee-clicking. Results A principal components analysis separated seven male traits into three groups. The dominant frequency of the knee-clicking sound honestly indicated body size, a main determinant of fighting ability. In contrast, the dewlap size increased with estimated age rather than body size, suggesting that, by magnifying the silhouette of older bulls disproportionately, the dewlap acts as an indicator of age-related traits such as fighting experience. Facemask darkness, frontal hairbrush size and body greyness aligned with a third underlying variable, presumed to be androgen-related aggression. A longitudinal study provided independent support of these findings. Conclusion The results show that the multiple agonistic signals in eland reflect three separate components of fighting ability: (1) body size, (2) age and (3) presumably androgen-related aggression, which is reflected in three backup signals. The study highlights how complex agonistic signalling systems can evolve through the simultaneous action of several selective forces, each of which favours multiple signals. Specifically, loud knee-clicking is discovered to be an honest signal of body size, providing an exceptional example of the potential for non-vocal acoustic communication in mammals.</p
Melatonin reduces TNF-a induced expression of MAdCAM-1 via inhibition of NF-kB.
BACKGROUND: Endothelial MAdCAM-1 (mucosal addressin cell adhesion molecule-1) expression is associated with the oxidant-dependent induction and progress of inflammatory bowel disease (IBD). Melatonin, a relatively safe, potent antioxidant, has shown efficacy in several chronic injury models may limit MAdCAM-1 expression and therefore have a therapeutic use in IBD. METHODS: We examined how different doses of melatonin reduced endothelial MAdCAM-1 induced by TNF-a in an in vitro model of lymphatic endothelium. Endothelial monolayers were pretreated with melatonin prior to, and during an exposure, to TNF-a (1 ng/ml, 24 h), and MAdCAM-1 expression measured by immunoblotting. RESULTS: MAdCAM-1 was induced by TNF-a. Melatonin at concentrations over 100 μm (10(-4) M) significantly attenuated MAdCAM-1 expression and was maximal at 1 mM. CONCLUSIONS: Our data indicate that melatonin may exert therapeutic activity in IBD through its ability to inhibit NF-kB dependent induction of MAdCAM-1
Proteomes and Signalling Pathways of Antler Stem Cells
As the only known example of complete organ regeneration in mammals, deer antler in the growing or velvet phase is of major interest in developmental biology. This regeneration event initiates from self-renewing antler stem cells that exhibit pluripotency. At present, it remains unclear how the activation and quiescence of antler stem cells are regulated. Therefore, in the present study proteins that were differentially expressed between the antler stem cells and somatic cells (facial periosteum) were identified by a gel-based proteomic technique, and analysed using Ingenuity Pathway Analysis software. Several molecular pathways (PI3K/Akt, ERK/MAPK, p38 MAPK, etc.) were found to be activated during proliferation. Also expressed were the transcription factors POU5F1, SOX2, NANOG and MYC, which are key markers of embryonic stem cells. Expression of these proteins was confirmed in both cultured cells and fresh tissues by Western blot analysis. Therefore, the molecular pathways and transcription factors identified in the current study are common to embryonic and adult stem cells. However, expression of embryonic stem cell transcription factors would suggest that antler stem cells are, potentially, an intermediary stem cell type between embryonic and the more specialized tissue-specific stem cells like those residing in muscle, fat or from a hematopoietic origin. The retention of this embryonic, pluripotent lineage may be of fundamental importance for the subsequent regenerative capacity of antlers
Age-Related Changes in the Daily Rhythm of Photoreceptor Functioning and Circuitry in a Melatonin-Proficient Mouse Strain
Retinal melatonin is involved in the modulation of many important retinal functions. Our previous studies have shown that the viability of photoreceptors and ganglion cells is reduced during aging in mice that lack melatonin receptor type 1. This demonstrates that melatonin signaling is important for the survival of retinal neurons. In the present study, we investigate the effects of aging on photoreceptor physiology and retinal organization in CH3-f+/+ mice, a melatonin proficient mouse strain. Our data indicate that the amplitude of the a and b waves of the scotopic and photopic electroretinogram decreases with age. Moreover, the daily rhythm in the amplitude of the a- and b- waves is lost during the aging process. Similarly, the scotopic threshold response is significantly affected by aging, but only when it is measured during the night. Interestingly, the changes observed in the ERGs are not paralleled by relevant changes in retinal morphological features, and administration of exogenous melatonin does not affect the ERGs in C3H-f+/+ at 12 months of age. This suggests that the responsiveness of the photoreceptors to exogenous melatonin is reduced during aging
- …