5 research outputs found

    Old Players with a Newly Defined Function: Fra-1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm

    Get PDF
    A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139–159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in >95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in non-activated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth

    N-3 fatty acids in patients with multiple cardiovascular risk factors

    No full text
    BACKGROUND: Trials have shown a beneficial effect of n-3 polyunsaturated fatty acids in patients with a previous myocardial infarction or heart failure. We evaluated the potential benefit of such therapy in patients with multiple cardiovascular risk factors or atherosclerotic vascular disease who had not had a myocardial infarction. METHODS: In this double-blind, placebo-controlled clinical trial, we enrolled a cohort of patients who were followed by a network of 860 general practitioners in Italy. Eligible patients were men and women with multiple cardiovascular risk factors or atherosclerotic vascular disease but not myocardial infarction. Patients were randomly assigned to n-3 fatty acids (1 g daily) or placebo (olive oil). The initially specified primary end point was the cumulative rate of death, nonfatal myocardial infarction, and nonfatal stroke. At 1 year, after the event rate was found to be lower than anticipated, the primary end point was revised as time to death from cardiovascular causes or admission to the hospital for cardiovascular causes. RESULTS: Of the 12,513 patients enrolled, 6244 were randomly assigned to n-3 fatty acids and 6269 to placebo. With a median of 5 years of follow-up, the primary end point occurred in 1478 of 12,505 patients included in the analysis (11.8%), of whom 733 of 6239 (11.7%) had received n-3 fatty acids and 745 of 6266 (11.9%) had received placebo (adjusted hazard ratio with n-3 fatty acids, 0.97; 95% confidence interval, 0.88 to 1.08; P=0.58). The same null results were observed for all the secondary end points. CONCLUSIONS: In a large general-practice cohort of patients with multiple cardiovascular risk factors, daily treatment with n-3 fatty acids did not reduce cardiovascular mortality and morbidity. Copyright © 2013 Massachusetts Medical Society
    corecore