28 research outputs found

    Type 2 Endoleak With or Without Intervention and Survival After Endovascular Aneurysm Repair

    Get PDF
    Objective: The aims of the present study were to examine the impact of type 2 endoleaks (T2EL) on overall survival and to determine the need for secondary intervention after endovascular aneurysm repair (EVAR). Methods: A multicentre retrospective cohort study in the Netherlands was conducted among patients with an infrarenal abdominal aortic aneurysm (AAA) who underwent EVAR between 2007 and 2012. The primary endpoint was overall survival for patients with (T2EL+) or without (T2EL-) a T2EL. Secondary endpoints were sac growth, AAA rupture, and secondary intervention. Kaplan–Meier survival and multivariable Cox regression analysis were used. Results: A total of 2 018 patients were included. The median follow up was 62.1 (range 0.1 – 146.2) months. No difference in overall survival was found between T2EL+ (n = 388) and T2EL- patients (n = 1630) (p =.54). The overall survival estimates at five and 10 years were 73.3%/69.4% and 45.9%/44.1% for T2EL+/T2EL- patients, respectively. Eighty-five of 388 (21.9%) T2EL+ patients underwent a secondary intervention. There was no difference in overall survival between T2EL+ patients who underwent a secondary intervention and those who were treated conservatively (p =.081). Sac growth was observed in 89 T2EL+ patients and 44/89 patients (49.4%) underwent a secondary intervention. In 41/44 cases (93.1%), sac growth was still observed after the intervention, but was left untreated. Aneurysm rupture occurred in 4/388 T2EL patients. In Cox regression analysis, higher age, ASA classification, and maximum iliac diameter were significantly associated with worse overall survival. Conclusion: No difference in overall survival was found between T2EL+ and T2EL- patients. Also, patients who underwent a secondary intervention did not have better survival compared with those who did not undergo a secondary intervention. This study reinforces the need for conservative treatment of an isolated T2EL and the importance of a prospective study to determine possible advantages of the intervention

    Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation

    No full text
    Defining progression of abdominal aortic aneurysm (AAA) is complicated by several factors, including measurement error, duration of follow-up, and the imaging modality used to assess AAA expansion. Investigations of biomarkers of AAA progression should be standardized so that valid comparisons can be made. Previous research has shown some promising advances towards identifying a reliable and individual predictor of AAA progression. In this second part of our Review on biomarkers of AAA progression, we examine direct and indirect markers of inflammation including various cytokines, C-reactive protein, activators of tissue plasminogen activator and urokinase plasminogen activator, and osteopontin

    Biomarkers of AAA progression. Part 1: extracellular matrix degeneration

    No full text
    Abdominal aortic aneurysm (AAA) is an important health problem. Elective surgical treatment is recommended on the basis of an individual's risk of rupture, which is predicted by AAA diameter. However, the natural history of AAA differs between patients and a reliable and individual predictor of AAA progression (growth and expansion rates) has not been established. Several circulating biomarkers are candidates for an AAA diagnostic tool. However, they have yet to meet the triad of biomarker criteria: biological plausibility, correlation with AAA progression, and prediction of treatment effect on disease outcome. Circulating levels of markers of extracellular matrix degeneration, such as elastin peptides, aminoterminal propeptide of type III procollagen, elastase-alpha1-antitrypsin complexes, matrix metalloproteinase 9, cystatin C, plasmin-antiplasmin complexes and tissue plasminogen activator, have been correlated with AAA progression and have biological plausibility. Although studies of these markers have shown promising results, they have not yet led to a clinically applicable biomarker. In future studies, adjustment for initial AAA size, smoking history and the measurement error for determination of AAA size, among other variables, should be taken into account. A large, prospective, standardized, follow-up study will be needed to investigate multiple circulating biomarkers for their potential role in the prediction of AAA progression, followed by a study to investigate the effect of treatment on the circulating levels of biomarkers

    Renal allograft failure related to a lower extremity vascular access--a case report.

    No full text
    Contains fulltext : 50516.pdf (publisher's version ) (Closed access

    Functional MRI in Peripheral Arterial Disease: Arterial Peak Flow versus Ankle-Brachial Index

    Get PDF
    OBJECTIVES: The purpose of this study was to compare the success rate of successful arterial peak flow (APF) and ankle-brachial index (ABI) measurements in patients with suspected or known peripheral arterial disease (PAD). MATERIALS AND METHODS: 183 patients with varying degrees of PAD were included. All subjects underwent ABI measurements and MR imaging of the popliteal artery to determine APF. Proportions of patients with successful APF and ABI measurements were compared and the discriminative capability was evaluated. RESULTS: APF was successfully measured in 91% of the patients, whereas the ABI could be determined in 71% of the patients (p<0.01). Success rates of APF and ABI were significantly higher in patients with intermittent claudication (95% and 80%, respectively) than in patients with critical ischemia (87% and 62%, respectively). CONCLUSIONS: Compared to the assessment of PAD severity with ABI, the success rate of MRI-based APF measurements in patients with a clinical indication for MRA is 20% higher, with similar discriminatory capacity for disease severity. Therefore, APF is an especially convenient and valuable measure to assess severity in PAD patients scheduled to undergo MR angiography to obtain additional functional information concerning the vascular status
    corecore