11 research outputs found

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Fine Structure of Nuclear Quadrupole Resonance Line of N 14

    No full text

    Science objectives of the ozone monitoring instrument

    No full text
    The Ozone Monitoring Instrument (OMI) flies on NASA's Earth Observing System AURA satellite, launched in July 2004. OMI is an ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day, with a spatial resolution of 13 kmtimes24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition OMI measures aerosol characteristics, cloud top heights and cloud coverage, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with daily global coverage and a small footprint will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change along with Aura's other three instruments. OMI's high spatial resolution enables detection of air pollution at urban scales. Total Ozone Mapping Spectrometer and differential optical absorption spectroscopy heritage algorithms, as well as new ones developed by the international (Dutch, Finnish, and U.S.) OMI science team, are used to derive OMI's advanced backscatter data products. In addition to providing data for Aura's prime objectives, OMI will provide near-real-time data for operational agencies in Europe and the U.S. Examples of OMI's unique capabilities are presented in this pape

    GOMOS validation

    No full text
    International audienceGOMOS (Global Ozone Monitoring by Occultation of Stars) on Envisat measures ozone, NO/sub 2/, NO/sub 3/, H/sub 2/O, aerosols, neutral air density, and temperature in the stratosphere and mesosphere by detecting the absorption of starlight in UV, visible and infrared wavelengths. During bright limb conditions, GOMOS also observes scattered solar radiation. GOMOS delivers ozone concentration profiles at altitudes 15-100 km with a vertical resolution of about 1.5 km and with a global coverage. As a self-calibrating method, stellar occultation measurements provide a basis for a long-term monitoring of ozone profiles. We present results achieved during the first year of the GOMOS validation program. The validation is based on comparisons with lidars, ozone sondes, balloon borne instruments, other satellites as well as with climatological and meteorological data

    Network science landers for Mars

    No full text
    International audienceThe NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter
    corecore