139 research outputs found
Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils
Devil facial tumour disease (DFTD) is a recently emerged fatal transmissible cancer decimating the wild population of Tasmanian devils (Sarcophilus harrisii). Biting transmits the cancer cells and the tumour develops in the new host as an allograft. The literature reports that immune escape mechanisms employed by DFTD inevitably result in host death. Here we present the first evidence that DFTD regression can occur and that wild devils can mount an immune response against the disease. Of the 52 devils tested, six had serum antibodies against DFTD cells and, in one case, prominent T lymphocyte infiltration in its tumour. Notably, four of the six devils with serum antibody had histories of DFTD regression. The novel demonstration of an immune response against DFTD in wild Tasmanian devils suggests that a proportion of wild devils can produce a protective immune response against naturally acquired DFTD. This has implications for tumour-host coevolution and vaccine development.Ruth Pye, Rodrigo Hamede, Hannah V. Siddle, Alison Caldwell, Graeme W. Knowles, Kate Swift, Alexandre Kreiss, Menna E. Jones, A. Bruce Lyons, Gregory M. Wood
A new view of k-essence
K-essence models, relying on scalar fields with non-canonical kinetic terms,
have been proposed as an alternative to quintessence in explaining the observed
acceleration of the Universe. We consider the use of field redefinitions to
cast k-essence in a more familiar form. While k-essence models cannot in
general be rewritten in the form of quintessence models, we show that in
certain dynamical regimes an equivalence can be made, which in particular can
shed light on the tracking behaviour of k-essence. In several cases, k-essence
cannot be observationally distinguished from quintessence using the homogeneous
evolution, though there may be small effects on the perturbation spectrum. We
make a detailed analysis of two k-essence models from the literature and
comment on the nature of the fine tuning arising in the models.Comment: 7 pages RevTeX4 file with four figures incorporate
Phantom with Born-Infield type Lagrangian
Recent analysis of the observation data indicates that the equation of state
of the dark energy might be smaller than -1, which leads to the introduction of
phantom models featured by its negative kinetic energy to account for the
regime of equation of state . In this paper, we generalize the idea to
the Born-Infield type Lagrangian with negative kinetic energy term and give the
condition for the potential, under which the late time attractor solution
exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be
published in Phys. Rev.
Holographic Dark Energy Model and Scalar-Tensor Theories
We study the holographic dark energy model in a generalized scalar tensor
theory. In a universe filled with cold dark matter and dark energy, the effect
of potential of the scalar field is investigated in the equation of state
parameter. We show that for a various types of potentials, the equation of
state parameter is negative and transition from deceleration to acceleration
expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio
The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities
‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio
Thermodynamics of Modified Chaplygin Gas and Tachyonic Field
Here we generalize the results of the work of ref. [10] in modified Chaplygin
gas model and tachyonic field model. Here we have studied the thermodynamical
behaviour and the equation of state in terms of volume and temperature for both
models. We have used the solution and the corresponding equation of state of
our previous work [12] for tachyonic field model. We have also studied the
thermodynamical stability using thermal equation of state for the tachyonic
field model and have shown that there is no critical points during
thermodynamical expansion. The determination of due to expansion for
the tachyonic field have been discussed by assuming some initial conditions.
Here, the thermal quantities have been investigated using some reduced
parameters.Comment: 10 page
Reconstructing the Equation of State of Tachyon
Recent progress in theoretical physics suggests that the dark energy in the
universe might be resulted from the rolling tachyon field of string theory.
Measurements to SNe Ia can be helpful to reconstruct the equation of state of
the rolling tachyon which is a possible candidate of dark energy. We present a
numerical analysis for the evolution of the equation of state of the rolling
tachyon and derive the reconstruction equations for the equation of state as
well as the potential.Comment: 6 pages, 3 figures, to appear Phys. Rev.
Gravitational Coupling and Dynamical Reduction of The Cosmological Constant
We introduce a dynamical model to reduce a large cosmological constant to a
sufficiently small value. The basic ingredient in this model is a distinction
which has been made between the two unit systems used in cosmology and particle
physics. We have used a conformal invariant gravitational model to define a
particular conformal frame in terms of large scale properties of the universe.
It is then argued that the contributions of mass scales in particle physics to
the vacuum energy density should be considered in a different conformal frame.
In this manner, a decaying mechanism is presented in which the conformal factor
appears as a dynamical field and plays a key role to relax a large effective
cosmological constant. Moreover, we argue that this model also provides a
possible explanation for the coincidence problem.Comment: To appear in GR
Time Lumps in Nonlocal Stringy Models and Cosmological Applications
We study lump solutions in nonlocal toy models and their cosmological
applications. These models are motivated by a description of D-brane decay
within string field theory framework. In order to find cosmological solutions
we use the simplest local approximation keeping only second derivative terms in
nonlocal dynamics. We study a validity of this approximation in flat background
where time lump solutions can be written explicitly. We work out the validity
of this approximation. We show that our models at large time exhibit the
phantom behaviour similar to the case of the string kink.Comment: Latex, 24 pages, 13 figures, Typos corrected, references adde
The -essence scalar field in the context of Supernova Ia Observations
A -essence scalar field model having (non canonical) Lagrangian of the
form where
with constant is shown to be consistent with luminosity
distance-redshift data observed for type Ia Supernova. For constant ,
satisfies a scaling relation which is used to set up a differential
equation involving the Hubble parameter , the scale factor and the
-essence field . and are extracted from SNe Ia data and using
the differential equation the time dependence of the field is found to
be: . The constants
have been determined. The time dependence is similar to that of the
quintessence scalar field (having canonical kinetic energy) responsible for
homogeneous inflation. Furthermore, the scaling relation and the obtained time
dependence of the field is used to determine the -dependence of the
function .Comment: 8 pages, 5 figures, Late
- …