602 research outputs found

    SIMULTANEOUS CONSIDERATION OF FLOW AND THERMAL EFFECTS OF FOULING IN CRUDE OIL PREHEAT TRAINS

    Get PDF
    Given models linking flow resistance and fouling resistance it becomes possible to simulate the effects of fouling on the hydraulic performance of a refinery pre-heat train. Such a simulation has been used here to identify when plant throughput will be limited by pressure drop; how throughput can be improved through the cleaning of individual exchangers and groups of exchangers; and how much production can be maintained when individual exchangers are taken off-line. Determination of better operating strategy requires a simulation of both hydraulic and thermal performance. In this paper we implement a pragmatic linked model and consider the results from a set of simulations

    Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique

    Full text link
    The potential energy surface (PES) of Lennard-Jones clusters is investigated using the activation-relaxation technique (ART). This method defines events in the configurational energy landscape as a two-step process: (a) a configuration is first activated from a local minimum to a nearby saddle-point and (b) is then relaxed to a new minimum. Although ART has been applied with success to a wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses, questions remain regarding the biases of the technique. We address some of these questions in a detailed study of ART-generated events in Lennard-Jones (LJ) clusters, a system for which much is already known. In particular, we study the distribution of saddle-points, the pathways between configurations, and the reversibility of paths. We find that ART can identify all trajectories with a first-order saddle point leaving a given minimum, is fully reversible, and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip

    Evaluation of Pattern Classifiers for Fingerprint and OCR Applications

    Get PDF
    (Also cross-referenced as CAR-TR-691) In this paper we evaluate the classification accuracy of four statistical and three neural network classifiers for two image based pattern classification problems. These are fingerprint classification and optical character recognition (OCR) for isolated handprinted digits. The evaluation results reported here should be useful for designers of practical systems for these two important commercial applications. For the OCR problem, the Karhunen-Loeve (K-L) transform of the images is used to generate the inp ut feature set. Similarly for the fingerprint problem, the K-L transform of the ridge directions is used to generate the input feature set. The statistical classifiers used were Euclidean minimum distance, quadratic minimum distance, normal, and knearest neighbor. The neural network classifiers used were multilayer perceptron, radial basis function, and probabilistic. The OCR data consisted of 7,480 digit images for training and 23,140 digit images for testing. The fingerprint data consisted of 9,000 trai ning and 2,000 testing images. In addition to evaluation for accuracy, the multilayer perceptron and radial basis function networks were evaluated for size and generalization capability. For the evaluated datasets the best accuracy obtained for either pro blem was provided by the probabilistic neural network, where the minimum classification error was 2.5% for OCR and 7.2% for fingerprints

    The Hyperfine Spin Splittings In Heavy Quarkonia

    Get PDF
    The hyperfine spin splittings in heavy quarkonia are studied using the recently developed renormalization group improved spin-spin potential which is independent of the scale parameter ÎŒ\mu. The calculated energy difference between the J/ψJ/\psi and the ηc\eta_c fits the experimental data well, while the predicted energy difference ΔMp\Delta M_p between the center of the gravity of 13P0,1,21^3P_{0,1,2} states and the 11P11^1P_1 state of charmonium has the correct sign but is somewhat larger than the experimental data. This is not surprising since there are several other contributions to ΔMp\Delta M_p, which we discuss, that are of comparable size (∌1\sim 1 MeV) that should be included, before precise agreement with the data can be expected. The mass differences of the ψâ€Č−ηcâ€Č\psi'-\eta_c', ΄(1S)−ηb\Upsilon(1S)-\eta_b, ΄(2S)−ηbâ€Č\Upsilon(2S)-\eta_b', and Bc∗−BcB_c^*-B_c are also predicted.Comment: 17 page

    Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings

    Full text link
    There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110\alpha radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3 (70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100') GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was about 10', 8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from -1.0 to 0 Jy and the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in Astrophysics and Space Scienc

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, Îœ+p→Μ+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp≃2EÎœ2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from Μˉe+p→e++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ΜΌ\nu_\mu, Μτ\nu_\tau, ΜˉΌ\bar{\nu}_\mu, and Μˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex

    The 'Iron Cage' strengthened? Discretion and digital discipline

    Get PDF
    Research on changes in public administration associated with the adoption and use of information and communication technologies ('informatization'), almost univocally supports the conclusion that shop floor discretion disappears under their influence. We, however, are ill at ease with this direction in thought about discretion. Our unease is based on the scholarly work about practices, organizational learning and responsiveness. In this article, we test the thesis on the relation between informatization and operational discretion in an empirical research of operational discretion and informatization in two Dutch public agencies, both large and both automated. Our findings show that informatization does not destroy operational discretion, but rather obscures discretion. Based on the work of Argyris, we show that the phenomenon at work is 'participatory boundary practices', the direct personal ties that keep an organization together. ICTs destroy such links and thereby affect organizational learning. © Blackwell Publishing Ltd. 2007

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, ÎČ=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For ÎČ=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for ÎČ=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure

    Relativistic quantum clocks

    Full text link
    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for "Workshop on Time in Physics" Zurich 201
    • 

    corecore