7 research outputs found
Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings
There are relatively few H2CO mappings of large-area giant molecular cloud
(GMCs). H2CO absorption lines are good tracers for low-temperature molecular
clouds towards star formation regions. Thus, the aim of the study was to
identify H2CO distributions in ambient molecular clouds. We investigated
morphologic relations among 6-cm continuum brightness temperature (CBT) data
and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA
telescope) and midcourse space experiment (MSX) data, and considered the impact
of background components on foreground clouds. We report simultaneous 6-cm H2CO
absorption lines and H110\alpha radio recombination line observations and give
several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3
(70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100')
GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can
compare correlations. The resolution for H2CO, 12CO and MSX data was about 10',
8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m
MSX colorscale and CBT data revealed great morphological correlation in the
large area, although there are some discrepancies between 12CO and H2CO peaks
in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a
high CBT, but a H2CO cloud to the north is possible against the cosmic
microwave background. A statistical diagram shows that 85.21% of H2CO
absorption lines are distributed in the intensity range from -1.0 to 0 Jy and
the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in
Astrophysics and Space Scienc
Contact With Nature, Sense of Humor, and Psychological Well-Being
We administered a questionnaire measuring contact with nature, sense of humor, and psychological well-being. Factor analysis of the humor items yielded four factors: humor production, humor appreciation, coping humor, and humor tolerance. Factor analysis of 14 well-being measures yielded three factors: emotional well-being, personal development, and effective functioning. The best sense-of-humor predictor of the well-being measures and factors was humor appreciation. Regression models for each of the well-being factors as dependent variables with humor appreciation and contact with nature as independent variables showed that additive models with both predictors were appropriate for personal development and effective functioning and that a simple model with humor appreciation as the sole predictor was sufficient for emotional well being. Secondary analyses suggested that contact with nature was the better predictor of effective functioning, whereas sense of humor was the better predictor of personal development
Barley acyl carrier protein: its amino acid sequence and assay using purified malonyl-CoA:ACP transacylase
Malonyl-CoA:ACP transacylase from barley (Hordeum vulgare L.) has been purified to homogeneity and used in an assay for acyl carrier protein (ACP). The transacylase is an acidic, monomeric protein with a molecular weight of 34,500 very similar to the analogous E. coli enzyme. A heat and acid stable acyl carrier protein from barley has been purified to homogeneity and its chemical composition determined. The ACP consists of a continuous stretch of the following 72 amino acids H2N-A-A-M-G-E-A-Q-A-K-K-E-T-V-D-K-V-(C?)-M-I-V-K-K-Q-L-A-V-P-D-G-T-P-V-T-A-E-S-K-F-S-E-L-G-A-D-S-L-D-T-V-E-I-V-M-G-L-E-E-E-F-N-I-T-V-D-E-T-S-A-Q-D-I-A72...A87-COOH. A comparison of the primary structure of this plant ACP and bacterial ACP reveals two identical sequences (underlined) in the midregion of the molecule containing the 4′-phosphopantetheine attachment site, while differences occur outside this region. Nine extra residues (italicized) are present at the N-terminal end of the barley protein thereby accounting for its larger size. Identical products are obtained when barley chloroplast fatty acid synthetase is incubated with either barley or E. coli ACP, but the latter is twice as active as the former in fatty acid synthesis. The possible significance of the N-terminal part of the ACP is discussed in relation to the reported differences in biochemical activities of plant and bacterial ACPs