55 research outputs found

    Hadronic ψ\psi production calculated in the NRQCD factorization formalism

    Get PDF
    The NRQCD factorization formalism of Bodwin, Braaten, and Lepage prescribes how to write quarkonium production rates as a sum of products of short-distance coefficients times non-perturbative long-distance NRQCD matrix elements. We present, in the true spirit of the factorization formalism, a detailed calculation of the inclusive cross section for hadronic ψ\psi production. We find that in addition to the well known {\it color-singlet} production mechanisms, there are equally important mechanisms in which the ccˉc\bar{c} pair that forms the ψ\psi is initially produced in a {\it color-octet} state, in either a 3S1{}^3S_1, 1S0{}^1S_0, 3P0{}^3P_0 or 3P2{}^3P_2 angular-momentum configuration. In our presentation, we emphasize the ``matching'' procedure, which %is the method that allows us to determine the short-distance coefficients appearing in the factorization formula. We also point out how one may systematically include relativistic corrections in these calculations.Comment: 25 pages, 3 postscript figures, use Revtex and epsfig.sty We fixed some typos, added some text regarding a reference, and changed some equations. The file will be available at http://phenom.physics.wisc.edu

    Inclusive SS-wave charmonium productions in BB decays

    Get PDF
    The inclusive SS-wave charmonium production rates in BB decays are considered using the Bodwin-Braaten-Lepage (BBL) approach, including the relativistic corrections and the color-octet mechanism suggested as a possible solution to the ψ\psi^{'} puzzle at the Tevatron. We first consider relativistic and radiative corrections to J/ψe+eJ/\psi \rightarrow e^{+} e^{-} and J/ψJ/\psi \rightarrow Light Hadrons (LH), in order to determine two nonperturbative parameters, J/ψO1(3S1)J/ψ\langle J/\psi | O_{1} (^{3}S_{1}) | J/\psi \rangle, J/ψP1(3S1)J/ψ\langle J/\psi | P_{1} (^{3}S_{1}) | J/\psi \rangle, in the factorization formulae for these decays. Using these two matrix elements and including the color-octet ccˉ(3S1)c\bar{c}(^{3}S_{1}) state contribution, we get a moderate increase in the decay rates for BB decays into J/ψ (or ψ) +XJ/\psi ~({\rm or}~\psi^{'}) ~+ X. Our results, B(BJ/ψ (or ψ)+X)=0.58 (0.23)%B(B \rightarrow J/\psi~({\rm or}~\psi^{'}) + X) = 0.58~(0.23) \% for Mb=5.3M_{b} = 5.3 GeV, get closer to the recent CLEO data. As a byproduct, we prefer a larger decay rate for ηc\eta_{c} \rightarrow LH compared to the present data.Comment: 12 page

    Power counting and effective field theory for charmonium

    Get PDF
    We hypothesize that the correct power counting for charmonia is in the parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as is HQET). This power counting leads to predictions which differ from those resulting from the usual velocity power counting rules of NRQCD. In particular, we show that while Lambda_QCD/m_c power counting preserves the empirically verified predictions of spin symmetry in decays, it also leads to new predictions which include: A hierarchy between spin singlet and triplet octet matrix elements in the J/psi system. A quenching of the net polarization in production at large transverse momentum. No end point enhancement in radiative decays. We discuss explicit tests which can differentiate between the traditional and new theories of NRQCD.Comment: 18 pages, 1 figure Replaced plot of the psi polarization parameter alpha as a function of transverse momentum. Alpha is now closer to zero for large transverse moment

    J/\psi production through resolved photon processes at e+ e- colliders

    Full text link
    We consider J/psi photoproduction in e+ e- as well as linear photon colliders. We find that the process is dominated by the resolved photon channel. Both the once-resolved and twice-resolved cross-sections are sensitive to (different combinations of) the colour octet matrix elements. Hence, this may be a good testing ground for colour octet contributions in NRQCD. On the other hand, the once-resolved J/psi production cross-section, particularly in a linear photon collider, is sensitive to the gluon content of the photon. Hence these cross-sections can be used to determine the parton distribution functions, especially the gluon distribution, in a photon, if the colour octet matrix elements are known.Comment: Added a figure on parametrisation dependence of photonic parton densities and some reference

    J/ψ+c+cˉJ/\psi + c + \bar{c} Photoproduction in e+ee^+ e^- Scattering

    Full text link
    We investigate the J/ψJ/\psi + c + cˉ\bar{c} photoproduction in e+ee^+ e^- collision at the LEP II energy. The physical motivations for this study are: 1) such next-to-leading order(NLO) process was not considered in previous investigations of J/ψJ/\psi photoproduction in e+ee^+ e^- interaction, and it is worthwhile to do so in order to make sound predictions for experimental comparison; 2) from recent Belle experiment results, the process with same final states at the BB factory has a theoretically yet unexplainable large fraction; hence it is interesting to see what may happen at other colliders; 3) the existing LEP data are marginal in observing such process, and at the planed Linear Colliders(LCs) this process can be measured with high accuracy; 4) it is necessary to take this process into consideration in the aim of elucidating the quarkonium production mechanism, especially in testing the universality of NRQCD nonperturbative matrix elements via J/ψJ/\psi photoproduction in electron-position collisions.Comment: 15 pages, 3 figure

    Inelastic J/ψJ/\psi production in polarized photon-hadron collisions

    Full text link
    Presented here is a calculation of inelastic J/ψJ/\psi production in polarized photon-hadron collisions under the framework of NRQCD factorization formalism. We consider the photoproduction of \jpsi in the energy range relevant to HERA. The Weizs\"acker-Williams approximation is adopted in the evaluation of the cross sections for epep collisions. We found that this process can give another independent test for the color-octet mechanism, and the different features for the two color-octet processes may provide further informations on the mechanism for inelastic \jpsi photoproduction. And the discrepancy on the production asymmetry AA between various sets of polarized gluon distribution functions is also found to be distinctive.Comment: 14pages, 6 PS figure

    Determination of color-octet matrix elements from e^+e- process at low energies

    Get PDF
    We present an analysis of the preliminary experimental data of direct j/psi production in e^e- process at low energies. We find that the color-octet contributions are crucially important to the cross section at this energy region, and their inclusion produces a good description of the data. By fitting to the data, we extract the individual values of two color-octet matrix elements: \approx 1.1\times 10^{-2} GeV^3, <{\cal O}_8^{\psi}(^3P_0)> m_c^2\approx 7.4\times 10^{-3}GeV^3. We discuss the allowed range of the two matrix elements constrained by the theoretical uncertainties. We find that is poorly determined because it is sensitive to the variation of the choice of m_c, \alpha_s and <{\cal O}_1^{\psi}(^3S_1)>. However m_c^2 is quite stable (about (6-9)\times 10^{-3}GeV^3) when the parameters vary in reasonable ranges. The uncertainties due to large experimental errors are also discussed.Comment: 13 page, RevTex, 2 figures in postscript. To appear in Phys. Rev.

    Color-Octet J/ψJ/\psi Production in the Υ\Upsilon Decay

    Full text link
    The direct production rate of ψ\psi in the Υ\Upsilon decay is shown to be dominated by the process Υggg \Upsilon \to ggg^* followed by gψg^* \to \psi via the color-octet mechanism proposed recently to explain the anomalous prompt charmonium production at the Tevatron. We show that this plausibly dominant process has a branching ratio compatible with the experimental data. Further experimental study in this channel is important to test the significance of the color-octet component of ccˉc\bar c pair inside the ψ\psi system.Comment: 20 pages, Standard LaTeX, 2 figures; a couple of new processes added, but conclusion unchange

    Production of singlet P-wave ccˉc \bar c and bbˉb \bar b states

    Full text link
    No spin-singlet bbˉb \bar b quarkonium state has yet been observed. In this paper we discuss the production of the singlet P-wave bbˉb\bar{b} and ccˉc\bar{c} 1P1^1P_1 states hbh_b and hch_c. We consider two possibilities. In the first the 1P1^1P_1 states are produced via the electromagnetic cascades \ups(3S) \to \eta_b(2S) + \gamma \to h_b + \gamma \gamma \to \eta_b +\gamma\gamma\gamma and ψηc+γhc+γγηc+γγγ\psi'\to \eta_c' + \gamma \to h_c + \gamma \gamma \to \eta_c + \gamma\gamma\gamma. A more promising process consists of single pion transition to the 1P1^1P_1 state followed by the radiative transition to the 11S01^1S_0 state: \ups(3S)\to h_b + \pi^0 \to \eta_b + \pi^0 +\gamma and ψhc+π0ηc+π0+γ\psi' \to h_c + \pi^0 \to \eta_c + \pi^0 +\gamma. For a million \ups(3S) or ψ\psi''s produced we expect these processes to produce several hundred events.Comment: 13 pages, LaTeX, 1 figure, to be published Phys. Rev. D. Some equation numbers and one table number correcte
    corecore