1,986 research outputs found

    D/H and water sources in Tissint

    Get PDF
    No abstract available

    Excited D-brane decay in Cubic String Field Theory and in Bosonic String Theory

    Get PDF
    In the cubic string field theory, using the gauge invariant operators corresponding to the on-shell closed string vertex operators, we have explicitly evaluated the decay amplitudes of two open string tachyons or gauge fields to one closed string tachyon or graviton up to level two. We then evaluated the same amplitudes in the bosonic string theory, and shown that the amplitudes in both theories have exactly the same pole structure. We have also expanded the decay amplitudes in the bosonic string theory around the Mandelstam variable s=0, and shown that their leading contact terms are fully consistent with a tachyonic Dirac-Born-Infeld action which includes both open string and closed string tachyon.Comment: 19 pages, Latex, v3; references added, some words about contact terms are adde

    Time Evolution in Superstring Field Theory on non-BPS brane.I. Rolling Tachyon and Energy-Momentum Conservation

    Full text link
    We derive equations of motion for the tachyon field living on an unstable non-BPS D-brane in the level truncated open cubic superstring field theory in the first non-trivial approximation. We construct a special time dependent solution to this equation which describes the rolling tachyon. It starts from the perturbative vacuum and approaches one of stable vacua in infinite time. We investigate conserved energy functional and show that its different parts dominate in different stages of the evolution. We show that the pressure for this solution has its minimum at zero time and goes to minus energy at infinite time.Comment: 16 pages, 5 figures; minor correction

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Effect of a Domain Wall on the Conductance Quantization in a Ferromagnetic Nanowire

    Full text link
    The effect of the domain wall (DW) on the conductance in a ballistic ferromagnetic nanowire (FMNW) is revisited by exploiting a specific perturbation theory which is effective for a thin DW; the thinness is often the case in currently interested conductance measurements on FMNWs. Including the Hund coupling between carrier spins and local spins in a DW, the conductance of a FMNW in the presence of a very thin DW is calculated within the Landauer-B\"{u}ttiker formalism. It is revealed that the conductance plateaus are modified significantly, and the switching of the quantization unit from e2/he^2/h to ``about 2e2/h2e^2/h'' is produced in a FMNW by the introduction of a thin DW. This accounts well for recent observations in a FMNW.Comment: 5 pages, 2 figures, Corrected typos and added reference

    Kernel density classification and boosting: an L2 sub analysis

    Get PDF
    Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification. A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research

    Ballistic electron transport through magnetic domain walls

    Full text link
    Electron transport limited by the rotating exchange-potential of domain walls is calculated in the ballistic limit for the itinerant ferromagnets Fe, Co, and Ni. When realistic band structures are used, the domain wall magnetoresistance is enhanced by orders of magnitude compared to the results for previously studied two-band models. Increasing the pitch of a domain wall by confinement in a nano-structured point contact is predicted to give rise to a strongly enhanced magnetoresistance.Comment: 4 pages, 2 figures; to appear in PRB as a brief repor

    de Sitter String Vacua from Supersymmetric D-terms

    Full text link
    We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur
    • …
    corecore