13 research outputs found

    Asteroseismology of red giants & galactic archaeology

    Full text link
    Red-giant stars are low- to intermediate-mass (M10M \lesssim 10~M_{\odot}) stars that have exhausted hydrogen in the core. These extended, cool and hence red stars are key targets for stellar evolution studies as well as galactic studies for several reasons: a) many stars go through a red-giant phase; b) red giants are intrinsically bright; c) large stellar internal structure changes as well as changes in surface chemical abundances take place over relatively short time; d) red-giant stars exhibit global intrinsic oscillations. Due to their large number and intrinsic brightness it is possible to observe many of these stars up to large distances. Furthermore, the global intrinsic oscillations provide a means to discern red-giant stars in the pre-helium core burning from the ones in the helium core burning phase and provide an estimate of stellar ages, a key ingredient for galactic studies. In this lecture I will first discuss some physical phenomena that play a role in red-giant stars and several phases of red-giant evolution. Then, I will provide some details about asteroseismology -- the study of the internal structure of stars through their intrinsic oscillations -- of red-giant stars. I will conclude by discussing galactic archaeology -- the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents -- and the role red-giant stars can play in that.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Microbial diversity and function in Antarctic freshwater ecosystems

    No full text
    Freshwater lakes occur through much of Antarctica and are characterized by short food chains dominated by microbes. Comparatively few studies have been made of continental freshwater lakes until recently, with the main emphasis being on the less extreme maritime Antarctic lakes. The wide range of trophic status seen at the northern extremes of the maritime Antarctic reduces markedly further south, but a wide range of micro-organisms occur throughout the latitudinal range. Information on seasonal and spatial patterns of microbial activity for freshwater lakes demonstrate rapid changes in community composition at certain times of year despite constant low temperatures. Benthic communities of cyanobacteria and bacteria are a feature of most lakes and are involved in a wide range of geochemical cycling. There is a need for more detailed taxonomic information on most groups and considerable potential for molecular studies
    corecore