197 research outputs found

    Transient domain walls and lepton asymmetry in the Left-Right symmetric model

    Full text link
    It is shown that the dynamics of domain walls in Left-Right symmetric models, separating respective regions of unbroken SU(2)_L and SU(2)_R in the early universe, can give rise to baryogenesis via leptogenesis. Neutrinos have a spatially varying complex mass matrix due to CP-violating scalar condensates in the domain wall. The motion of the wall through the plasma generates a flux of lepton number across the wall which is converted to a lepton asymmetry by helicity-flipping scatterings. Subsequent processing of the lepton excess by sphalerons results in the observed baryon asymmetry, for a range of parameters in Left-Right symmetric models.Comment: v2 version accepted for publication in Phys. Rev. D. Discussion in Introduction and Conclusion sharpened. Equation (12) corrected. 16 pages, 3 figure files, RevTeX4 styl

    Mixing-induced CP violating sources for electroweak baryogenesis from a semiclassical approach

    Full text link
    The effects of flavor mixing in electroweak baryogenesis is investigated in a generalized semiclassical WKB approach. Through calculating the nonadiabatic corrections to the particle currents it is shown that extra CP violation sources arise from the off-diagonal part of the equation of motion of particles moving inside the bubble wall. This type of mixing-induced source is of the first order in derivative expansion of the Higgs condensate, but is oscillation suppressed. The numerical importance of the mixing-induced source is discussed in the Minimal Supersymmetric Standard Model and compared with the source term induced by semiclassical force. It is found that in a large parameter space where oscillation suppression is not strong enough, the mixing-induced source can dominate over that from the semiclassical force.Comment: 19 pp, 2 figs, 1 table, some comments added, to appear in Eur.Phys.J.

    Semiclassical force for electroweak baryogenesis: three-dimensional derivation

    Get PDF
    We derive a semiclassical transport equation for fermions propagating in the presence of a CP-violating planar bubble wall at a first order electroweak phase transition. Starting from the Kadanoff-Baym (KB) equation for the two-point (Wightman) function we perform an expansion in gradients, or equivalently in the Planck constant h-bar. We show that to first order in h-bar the KB equations have a spectral solution, which allows for an on-shell description of the plasma excitations. The CP-violating force acting on these excitations is found to be enhanced by a boost factor in comparison with the 1+1-dimensional case studied in a former paper. We find that an identical semiclassical force can be obtained by the WKB method. Applications to the MSSM are also mentioned.Comment: 19 page

    Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM

    Full text link
    We study the implications for electroweak baryogenesis (EWB) within the minimal supersymmetric Standard Model (MSSM) of present and future searches for the permanent electric dipole moment (EDM) of the electron, for neutralino dark matter, and for supersymmetric particles at high energy colliders. We show that there exist regions of the MSSM parameter space that are consistent with both present two-loop EDM limits and the relic density and that allow for successful EWB through resonant chargino and neutralino processes at the electroweak phase transition. We also show that under certain conditions the lightest neutralino may be simultaneously responsible for both the baryon asymmetry and relic density. We give present constraints on chargino/neutralino-induced EWB implied by the flux of energetic neutrinos from the Sun, the prospective constraints from future neutrino telescopes and ton-sized direct detection experiments, and the possible signatures at the Large Hadron Collider and International Linear Collider.Comment: 32 pages, 10 figures; version to appear on JHE

    Core Structure of Global Vortices in Brane World Models

    Full text link
    We study analytically and numerically the core structure of global vortices forming on topologically deformed brane-worlds with a single toroidally compact extra dimension. It is shown that for an extra dimension size larger than the scale of symmetry breaking the magnitude of the complex scalar field at the vortex center can dynamically remain non-zero. Singlevaluedness and regularity are not violated. Instead, the winding escapes to the extra dimension at the vortex center. As the extra dimension size decreases the field magnitude at the core dynamically decreases also and in the limit of zero extra dimension size we reobtain the familiar global vortex solution. Extensions to other types of defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure

    DBI Lifshitz Inflation

    Full text link
    A new model of DBI inflation is introduced where the mobile brane, the inflaton field, is moving relativistically inside a Lifshitz throat with an arbitrary anisotropic scaling exponent zz. After dimensional reduction to four dimension the general covariance is broken explicitly both in the matter and the gravitational sectors. The general action for the metric and matter field perturbations are obtained and it is shown to be similar to the classifications made in the effective field theory of inflation literature.Comment: Version 3: minor typos corrected, the JCAP published versio

    The Shape of Gravity in a Warped Deformed Conifold

    Full text link
    We study the spectrum of the gravitational modes in Minkowski spacetime due to a 6-dimensional warped deformed conifold, i.e., a warped throat, in superstring theory. After identifying the zero mode as the usual 4D graviton, we present the KK spectrum as well as other excitation modes. Gluing the throat to the bulk (a realistic scenario), we see that the graviton has a rather uniform probability distribution everywhere while a KK mode is peaked in the throat, as expected. Due to the suppressed measure of the throat in the wave function normalization, we find that a KK mode's probability in the bulk can be comparable to that of the graviton mode. We also present the tunneling probabilities of a KK mode from the inflationary throat to the bulk and to another throat. Due to resonance effect, the latter may not be suppressed as natively expected. Implication of this property to reheating after brane inflation is discussed

    Fields Annihilation and Particles Creation in DBI inflation

    Full text link
    We consider a model of DBI inflation where two stacks of mobile branes are moving ultra relativistically in a warped throat. The stack closer to the tip of the throat is annihilated with the background anti-branes while inflation proceeds by the second stack. The effects of branes annihilation and particles creation during DBI inflation on the curvature perturbations power spectrum and the scalar spectral index are studied. We show that for super-horizon scales, modes which are outside the sound horizon at the time of branes collision, the spectral index has a shift to blue spectrum compared to the standard DBI inflation. For small scales the power spectrum approaches to its background DBI inflation value with the decaying superimposed oscillatory modulations.Comment: First revision: minor changes, the background spectral index is corrected, new references are added. Second revision: minor changes, new references are added, accepted for publication in JCA

    Axionic D3-D7 Inflation

    Get PDF
    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 x T_2/Z_2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflation leads to the prediction n_s \le 0.95 for the spectral index. The slow roll is insensitive to most of the features of the effective superpotential, and requires a one-in-10^4 tuning to ensure that the torus is close to square in shape. We also consider D-term inflation with the D3 close to the attractive D7, but find that for a broad (but not exhaustive) class of parameters the conditions for slow roll tend to destabilize the bulk moduli. In contrast to the axionic case, the best inflationary example of this kind requires the delicate adjustment of potential parameters (much more than the part-per-mille level), and gives inflation only at an inflection point of the potential (and so suffers from additional fine-tuning of initial conditions to avoid an overshoot problem).Comment: 29 pages, 5 figure

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.
    • …
    corecore