33 research outputs found

    Chromatin-modifying enzymes as modulators of reprogramming

    Get PDF
    Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors. © 2012 Macmillan Publishers Limited. All rights reserved

    A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling

    No full text
    Senescence limits the proliferative capacity of primary cells in culture. We describe here a genetic screen to identify genes that allow bypass of this checkpoint. Using retroviral cDNA expression libraries, we identify BCL6 as a potent inhibitor of senescence. BCL6 is frequently activated in non-Hodgkin's lymphoma, but its mechanism of action has remained unclear. BCL6 efficiently immortalizes primary mouse embryonic fibroblasts and cooperates with RAS in oncogenic transformation. BCL6 overrides the senescence response downstream of p53 through a process that requires induction of cyclin D1 expression, as cyclin D1 knockout fibroblasts are specifically resistant to BCL6 immortalization. We show that BCL6 expression also dramatically extends the replicative lifespan of primary human B cells in culture and induces cyclin D1 expression, indicating that BCL6 has a similar activity in lymphoid cells. Our results suggest that BCL6 contributes to oncogenesis by rendering cells unresponsive to antiproliferative signals from the p19ARF-p53 pathway

    A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts

    No full text
    The c-myc gene is frequently over-expressed in human cancers and is involved in regulation of proliferation, differentiation and apoptosis. c-Myc is a transcription factor that acts primarily by regulating the expression of other genes. However, it has been very difficult to identify bona fide c-Myc target genes that explain its diverse biological activities. The recent generation of c-myc deficient Rat1A fibroblasts with a profound and stable growth defect provides a new system to search for genes that can substitute for c-myc in proliferation. In this study, we have attempted to identify genes that rescue the slow growth phenotype of c-myc null cells through introduction of a series of potent cell cycle regulatory genes and several retroviral cDNA expression libraries. None of the candidate genes tested, including SV40 T-antigen and adenovirus E1A, caused reversal of the c-myc null growth defect. Furthermore, extensive screens with high-complexity retroviral cDNA libraries from three different tissue sources revealed that only c-myc and N-myc rescued the c-myc null slow-growth phenotype. Our data support the notion that there are no functional equivalents of the myc family of proto-oncogenes and also suggest that there are no c-Myc-activated genes that alone can substitute for c-Myc in control of cell proliferatio

    Stem cells assessed

    No full text
    The increasing momentum of stem cell research continues, with the better characterization of induced pluripotent stem (iPS) cells, the conversion of differentiated cells into different cell types and the use of pluripotent stem cells to generate whole tissues, among other advances. Here, six experts in the field of stem cell research compare different stem cell models and highlight the importance of pursuing complementary experimental approaches for a better understanding of pluripotency and differentiation and an informed approach to medical applications. © 2012 Macmillan Publishers Limited. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Optimal movement control models of Langevin and Hamiltonian types

    No full text
    We study a class of optimal stochastic control problems arising from the control of movements. Exact solutions are first presented for linear cases for both the during- and post-movement control problem, depending on a parameter alpha > 0. It is found that for the Langevin type equation and for the post-movement control case, a non-degenerate solution exists only when alpha > 1/2. For the Langevin type equation and for the during-movement control, a non-degenerate solution is found when alpha > 1. For the post-movement control and the Hamiltonian type equation, an optimal control signal is obtained and is non-degenerate when alpha > 1/2. Again for the during-movement control, we find an optimal non-degenerate control signal when alpha > 1. All results are then generalized to nonlinear control cases (the first order perturbation of linear cases). Numerical examples are included to illustrate the applications of our results. (C) 2006 Elsevier Ltd. All rights reserved

    Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes.

    No full text
    Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. In vivo, rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts. Mouse models have been used for BMAds research, but isolation of primary BMAds presents many challenges, and thus in vitro models remain the current standard to study nuances of adipocyte differentiation. No in vitro model has yet been described for the study of rBMAds/cBMAds. Here, we present an in vitro model of BM adipogenesis with differential rBMAd and cBMAd-like characteristics. We used OP9 BM stromal cells derived from a (C57BL/6xC3H)F2-op/op mouse, which have been extensively characterized as feeder layer for hematopoiesis research. We observed similar canonical adipogenesis transcriptional signatures for spontaneously-differentiated (sOP9) and induced (iOP9) cultures, while fatty acid composition and desaturase expression of Scd1 and Fads2 differed at the population level. To resolve differences at the single adipocyte level we tested Raman microspectroscopy and show it constitutes a high-resolution method for studying adipogenesis in vitro in a label-free manner, with resolution to individual LDs. We found sOP9 adipocytes have lower unsaturation ratios, smaller LDs and higher hematopoietic support than iOP9 adipocytes, thus functionally resembling rBMAds, while iOP9 more closely resembled cBMAds. Validation in human primary samples confirmed a higher unsaturation ratio for lipids extracted from stable cBMAd-rich sites (femoral head upon hip-replacement surgery) versus labile rBMAds (iliac crest after chemotherapy). As a result, the 16:1/16:0 fatty acid unsaturation ratio, which was already shown to discriminate BMAd subtypes in rabbit and rat marrow, was validated to discriminate cBMAds from rBMAd in both the OP9 model in vitro system and in human samples. We expect our model will be useful for cBMAd and rBMAd studies, particularly where isolation of primary BMAds is a limiting step
    corecore