29 research outputs found

    Homogenization and seismic assessment : review and recent trends

    Get PDF
    The mechanics of masonry structures has been for long underdeveloped in comparison with other fields of knowledge. Presently, non-linear analysis is a popular field in masonry research and advanced computer codes are available for researchers and practitioners. The chapter presents a discussion of masonry behaviour and clarifies how to obtain the non-linear data required by the computations. The chapter also addresses different homogenisation techniques available in the literature in the linear and rigid-plastic case, aiming at defining a catalogue and at discussing the advantages and disadvantages of the different approaches. Special attention is given to stress assumed models based either on a polynomial expansion of the micro-stress field or in the discretization of the unit cell by means of a few constant stress finite elements CST with joints reduced to interfaces. Finally, the aspects of seismic assessment are presented and case studies involving the use of macro-block analysis, static (pushover) analysis and time integration analysis are discussed.(undefined

    Effect of a 2-week interruption in methotrexate treatment on COVID-19 vaccine response in people with immune-mediated inflammatory diseases (VROOM study): a randomised, open label, superiority trial

    Get PDF
    Background: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. Method: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≄18 years) with immune-mediated inflammatory diseases taking methotrexate (≀25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. Finding: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227–29 056) in the suspend methotrexate group and 12 326 U/mL (10 538–14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59–2·70; p<0·0001). No intervention-related serious adverse events occurred. Interpretation: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. Funding: National Institute for Health and Care Research

    On Unsaturated Soil Mechanics – Personal Views on Current Research

    No full text
    This paper presents the authors’ personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis

    The effect of roughness on biophysical stimuli at the bone–cartilage interface

    No full text
    Numerical simulations are often used to investigate the effect of mechanical environment on fracture healing. Although these models exhibit biologically relevant mechanical parameters at the bone–callus interface, this interface is modelled as perfectly smooth when in fact it is rough. In this study, a macro–micro-two-scale finite element model was used to determine if roughness significantly alters calculated local mechanical parameters. An idealized fracture healing poroelastic model with a small micro-modelled sub-domain of cartilaginous callus adjacent to rough bone was subjected to cyclic loading. The shear stress, tangential fluid velocity, and pore pressure were investigated. With roughness similar to that at the growth plate, solid matrix shear stress differed substantially with interface roughness, whereas interstitial fluid velocity and pore pressure were only slightly affected. Hence, when modelling local micro-mechanical environments near hard–soft tissue interfaces, interface roughness should be considered

    Numerical simulation of the influence of rough bone-callus interface on the healing of fractured bone.

    No full text
    The process of healing of fractured bone is known to be influenced by the mechanical environment and the loads exerted by physical activity of the patient or otherwise. We compute mechanical fields in the soft connective tissue of the healing fracture using Biot's poroelasticity model and a finite element (FE) method for low-frequency loading. A two-scale FE framework is used to model effects of the rough bone-callus contact surface. We look at the difference the interface roughness makes with respect to different possible mechanostimulating agents

    Rate Dependent Elastoviscoplastic Model

    No full text

    A two-dimensional FEM analysis of the response of the human head to impact : the importance of boundary conditions

    No full text
    The objective of this study is to obtain a better understanding of the possible importance of skull-brain interface conditions, a neck constraint and brain material properties for the response of the human head to transient loadings. To that end, a 2D plane-strain finite element model (FEM) of a para-sagittal section of a human head was developed. First-for the purpose of validation-the loading conditions realized in experiments reported in the literature were used as input to a completely linear elastic model without a neck constraint. This was done for both rigid coupling and no coupling at the skull-brain interface. Next, simulations were performed with various versions of the model. These versions were obtained by using different combinations of the following features: linear elastic or viscoelastic brain material properties, different contact conditions at the skull-brain interface, and incorporation of a neck constraint. The results of these simulations are discusse
    corecore